# The Trace of the Zygmund Class $\Lambda_{k}(R)$ to Closed Sets and Interpolating Polynomials* 

Alf Jonsson<br>Institute of Mathematics, University of Umeà, S-901 87 Umeà, Sweden<br>Communicated by Oved Shisha

Received April 30, 1981; revised August 11, 1983

## 0. Introduction

Let $A_{k}\left(R^{n}\right)$ denote the Zygmund class of continuous functions satisfying $\left|U_{h}^{k+1} f(x)\right| \leqslant c|h|^{k}$ and $|f(x)| \leqslant c, x, h \in R^{n}$, where $\Delta_{h}^{k+1} f(x)$ is the difference of order $k+1$ with step $h$ at $x$ (Definition 1 below). In [1], with further development in [2] (see also [5]), the author together with H. Wallin characterized the trace $\left\{f \mid F ; f \in \Lambda_{k}\left(R^{n}\right)\right\}$ of $\Lambda_{k}\left(R^{n}\right)$ to an arbitrary closed set $F \subset R^{n}$ by means of certain approximation properties (Theorem 1 below). The characterizations given in those papers, however, are non-constructive. One consequence of this is that the extension theorem which is the main part of Theorem 1 is not obtained by means of a linear extension operator.

In this paper we give a characterization of the trace of $\Lambda_{k}(R)$ to an arbitrary closed subset $F$ of $R$, which is of a more constructive character, using interpolating polynomials (Definition 3 and Theorem 2); observe that we now work in one dimension. As a consequence, we obtain a bounded, linear extension operator from the trace space to $\Lambda_{k}(R)$ (Theorem 3). In Proposition 1, we give a characterization of $\Lambda_{k}(R)$ by means of interpolating polynomials, which we have previously seen for $k=1$ only.

The problem studied in this paper is similar to one studied by H. Whitney in [7], where a characterization of the trace of $C^{m}(R)$, the class of $m$ times continuously differentiable functions, to closed subsets of $R$ was given with the aid of interpolating polynomials. Whitney's result has been generalized by J. Merrien in [3]. One could say that the present paper is related to [1] in the same way as Whitney's paper [7] is related to his paper [6], where he proves his classical extension theorem. To characterize the trace of the Lipschitz spaces $\Lambda_{\alpha}(R), \alpha$ non-integer (cf. [4], Chap. VI), is

[^0]a problem which is very close to the one studied in [3] and [7] and hence we consider the integer case only.

It is an open problem to obtain results similar to those in this paper, and to those in [7], in several dimensions.

## 1. Definitions and Results

We first give one of many possible definitions of the classical Zygmund (or Lipschitz) space $\Lambda_{k}\left(R^{n}\right)$. It is important to note that we deal with the spaces which are defined by means of a difference of order $k+1$ and not of order $k$, which leads to a different space (see, e.g., [4, p. 141]). By $\Delta_{h}^{m} f(x)$, $x, h \in R^{n}, m$ positive integer, we denote the difference of order $m$ with step $h$ at the point $x$, i.e., $\Delta_{h}^{1} f(x)=f(x+h)-f(x)$ and, for $m>1, \Delta_{h}^{m} f(x)=$ $\Delta_{h}^{1}\left(\Delta_{h}^{m-1} f\right)(x)$.

Definition 1 (the spaces $\Lambda_{k}\left(R^{n}\right)$ ). Let $f$ be defined on $R^{n}$. Then $f \in \Lambda_{k}\left(R^{n}\right), k$ positive integer, if and only if $f$ is continuous and for $x, h \in R^{n}$ and for some constant $M$ satisfies

$$
\begin{equation*}
\left|\Delta_{h}^{k+1} f(x)\right| \leqslant M|h|^{k} \quad \text { and } \quad|f(x)| \leqslant M \tag{1.1}
\end{equation*}
$$

The norm of $f$ in $\Lambda_{k}\left(R^{n}\right)$ is defined as the infimum of the constants $M$ in (1.1). Alternatively, $\Lambda_{k}\left(R^{n}\right)$ may be defined as the space consisting of all functions $f$ which have continuous and bounded derivatives up to order $k-1$, and with derivatives $f^{(j)}$ of order $k-1$ satisfying $\left|\Delta_{h}^{2} f^{(j)}(x)\right| \leqslant M|h|$. Often spaces $\Lambda_{\alpha}\left(R^{n}\right)$ are defined for $\alpha>0$, but since our interest lies in the integer case (cf. the introduction) we restrict ourselves to $\Lambda_{k}\left(R^{n}\right)$. Also, Definition 2 and Theorem 1 were in [2] given for spaces $\Lambda_{\alpha}(F), \alpha>0$, and also in a more general form from other aspects.

From now on, $F$ will always denote a closed subset of $R^{n}$.
The spaces $\Lambda_{k}(F)$ in the next definition were given in [2, Theorem 1.3], see also [1, Remark 4.5]. In [2] we used a different notation. If $F=R^{n}$, the space $\Lambda_{k}(F)$ given by Definition 2 coincides with the space $\Lambda_{k}\left(R^{n}\right)$ in Definition 1, cf. [2, Proposition 1.3].

Definition 2 (the space $\Lambda_{k}(F)$ ). Let $f$ be defined on $F$. Then $f \in \Lambda_{k}(F)$, $k$ positive integer, if and only if the following condition holds: for every closed cube $Q$ in $R^{n}$ with $Q \cap F \neq \varnothing$ and with sides of length $\delta>0$, there exists a polynomial $P_{Q}$ of degree $\leqslant k$ such that

$$
\begin{equation*}
\left|f(x)-P_{Q}(x)\right| \leqslant c \delta^{k}, \quad x \in Q \cap F \tag{1.2}
\end{equation*}
$$

if $Q^{\prime}$ is a cube with sides of length $\delta^{\prime}>0, Q^{\prime} \cap F \neq \varnothing$, then

$$
\begin{equation*}
\left|P_{Q}(x)-P_{Q^{\prime}}(x)\right| \leqslant c\left(\max \left(\delta, \delta^{\prime}\right)\right)^{k}, \quad x \in Q \cap Q^{\prime} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|P_{Q}(x)\right| \leqslant c, \quad x \in Q, \quad \text { if } \delta=1 \tag{1.4}
\end{equation*}
$$

The norm of $f \in A_{k}(F)$ is the infimum of the constants $c$, such that (1.2)-(1.4) hold for some collection $\left\{P_{Q}\right\}$.

The interest in the spaces $\Lambda_{k}(F)$ comes from the following theorem, which says that $\Lambda_{k}(F)$ is the "trace" of the classical space $A_{k}\left(R^{n}\right)$ to $F$. By $f \mid F$ we denote the pointwise restriction to $F$ of a continuous function $f$ defined on $R^{n}$.

Theorem 1. $\Lambda_{k}(F)=\left\{f \mid F ; f \in \Lambda_{k}\left(R^{n}\right)\right\}$.
Theorem 1 is essentially an extension theorem, since if $f \in A_{k}\left(R^{n}\right)$, then it is obvious from Definition 2 that $f \mid F \in \Lambda_{k}(F)$. The interesting part of Theorem 1 is the fact that if $g \in \Lambda_{k}(F)$, then there exists an extension $f$ defined on $R^{n}$ of $g$ with $f \in A_{k}\left(R^{n}\right)$; it is also known that the $\Lambda_{k}\left(R^{n}\right)$-norm of $f$ is less than a constant times the $A_{k}(F)$-norm of $g$, where the constant only depends on $k$ and $n$. Theorem 1 was given in [2] (see Corollary 1.1 of that paper). However, that corollary is in its turn more or less a reformulation of the extension theorem in [1].

We now come to the results of this paper, and work from now on in one dimension. In the following definition $k$ is a positive integer, $a$ denotes a set consisting of $k+1$ distinct points from $F, a=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\},|a|$ is the diameter of the set $a, Q_{a}$ is the smallest closed interval containing $a$, and $P_{a}$ is the unique polynomial of degree $\leqslant k$ interpolating $f$ at $a_{0}, a_{1}, \ldots, a_{k}$. The letter $b$ is used analogously. Also, if $0 \leqslant v<k, a(v)$ is a set of $v+1$ distinct points from $F, P_{a(v)}$ is the polynomial of degree $\leqslant v$ interpolating $f$ at the points of $a(v)$, and $Q_{a(v)}$ is the smallest interval containing $a(v)$.

Definition 3 (the space $\Lambda_{k}^{*}(F)$ ). Let $F \subset R$ and let $f$ be defined on $F$. Then $f \in \Lambda_{k}^{*}(F)$ if and only if to any $a$ and $b$ with $k$ points in common and $|b| \geqslant|a|$

$$
\begin{equation*}
\left|P_{a}^{(k)}-P_{b}^{(k)}\right| \leqslant c(1+\ln (|b| /|a|)), \tag{1.5}
\end{equation*}
$$

and for any $a$ and any $a(v), 0 \leqslant v<k$,

$$
\begin{equation*}
\left|P_{a(v)}^{(v)}\right| \leqslant c \quad \text { and } \quad\left|P_{a}^{(k)}\right| \leqslant c(1+\max (\ln (1 /|a|), 0) . \tag{1.6}
\end{equation*}
$$

The norm of $f \in \Lambda_{k}^{*}(F)$ is the infimum of the constants $c$ appearing in (1.5) and (1.6).

Here $P_{a(v)}^{(v)}$ and $P_{a}^{(k)}$ denote derivatives of order $v$ and $k$, respectively, so they are constant functions.

The next theorem is proved in Section 3.
Theorem 2. Let $F \subset R$. Then

$$
A_{k}^{*}(F)=\Lambda_{k}(F)
$$

with equivalent norms. More precisely, there exist constants $c_{1}$ and $c_{2}$, depending only on $k$, such that, if $f \in \Lambda_{k}(F)$ or $f \in \Lambda_{k}^{*}(F)$,

$$
\begin{equation*}
c_{1}\|f\|_{\Lambda_{k}(F)} \leqslant\|f\|_{\Lambda_{k}^{*}(F)} \leqslant c_{2}\|f\|_{\Lambda_{k}(F)} . \tag{1.7}
\end{equation*}
$$

Thus, by Theorem $1, \Lambda_{k}^{*}(F)$ is an alternative characterization of the trace of $\Lambda_{k}\left(R^{n}\right)$ to $F$ for the case $n=1$. It has the advantage of being of a more constructive character, which leads to the following theorem (see the end of Section 3 for an explanation).

Theorem 3. Let $F \subset R$ and let $k$ be fixed. Then there exists a continuous, linear extension operator $E: \Lambda_{k}^{*}(F) \rightarrow \Lambda_{k}(R)$. The norm of the operator depends only on $k$.

Of course, the restriction operator from $\Lambda_{k}(R)$ to $\Lambda_{k}(F)$ is trivially continuous. The operator $E$ in Theorem 3 is not the same for different values of $k$.

Next we give a characterization of $\Lambda_{k}(R)$ using interpolating polynomials, which is a little different than the one obtained by taking $F=R$ in Definition 3. For $k=1$, the proposition below was given in [1], but the proof given there cannot be generalized to cover the cases $k>1$. As before, a denotes a set consisting of $k+1$ points from $R$.

Proposition 1. A function $f$ belongs to $\Lambda_{k}(R)$ if and only if there exists a constant $M$ such that $|f| \leqslant M$ and for every a

$$
\begin{equation*}
\left|f(x)-P_{a}(x)\right| \leqslant M|a|^{k}, \quad x \in Q_{a} . \tag{1.8}
\end{equation*}
$$

The $\Lambda_{k}(R)$-norm of $f$ is equivalent to the infimum of the constants $M$.
The proof of this proposition is given in Remark 1 in the next section.

## 2. Preliminaries

This section is a preparation for the proof of Theorem 2, which is given in the next section. From now on, $c$ denotes a constant, not necessarily the
same each time it appears. Neither do we from time to time specify how $c$ depends on other constants; in most formulas in this section, however, $c$ is in a natural way equal to the $\Lambda_{k}^{*}(F)$-norm or the $\Lambda_{k}(F)$-norm of a given function $f$, multiplied by a constant which depends on $k$ and maybe some other constants, which in their turn, when the formulas are applied in Section 3, will be chosen only depending on $k$. Lemma 1 and the first two remarks contain results on the space $\Lambda_{k}^{*}(F)$.

In the lemma, we use the same notation as in Definition 3, but we do not assume that $a$ and $b$ have $k$ points in common, and furthermore $l Q_{a}$ denotes the interval with the same center as $Q_{a}$ but with length $l|a|$.

Lemma 1. Let $l \geqslant 1$, and let $f \in \Lambda_{k}^{*}(F)$. Then

$$
\begin{equation*}
\left|P_{a}(x)-P_{b}(x)\right| \leqslant c(\max (|a|,|b|))^{k}, \quad x \in l Q_{a} \cap l Q_{b} \tag{2.1}
\end{equation*}
$$

Proof. We may suppose that $|a| \leqslant|b|$. Assume first that $a$ and $b$ have $k$ points in common, say $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$. Consider the zero-polynomial as the polynomial of degree at most $k-1$ interpolating $P_{a}-P_{b}$ at these points. Then, by Lagrange's interpolation formula with remainder, for some $\tau$,

$$
P_{a}(x)-P_{b}(x)-0=\left(P_{a}^{(k)}(\tau)-P_{b}^{(k)}(\tau)\right) \prod_{i=1}^{k}\left(x-\alpha_{i}\right) / k!.
$$

Using (1.5) this gives

$$
\begin{equation*}
\left|P_{a}(x)-P_{b}(x)\right| \leqslant c(1+\ln (|b| /|a|)) \prod_{i=1}^{k}\left|x-\alpha_{i}\right| \tag{2.2}
\end{equation*}
$$

If now $x \in l Q_{a}$, then $\left|x-\alpha_{i}\right| \leqslant l|a|$, and using also that $1+\ln (|b| /|a|) \leqslant$ $|b| /|a|$, we obtain from (2.2) that $\left|P_{a}(x)-P_{b}(x)\right| \leqslant c|b||a|^{k-1} \leqslant c|b|^{k}$, which is (2.1) in case $a$ and $b$ have $k$ points in common.

We next prove the lemma assuming that $Q_{a} \subset Q_{b}$. We do this by exchanging the elements of $a$ by elements of $b$, one at a time, and using in each step the already proved case. Let $d_{0}=a$. Let $d_{1}$ be as $a$, but with the smallest element of $a$ replaced by the smallest in $b$. Let $d_{2}$ be as $d_{1}$ but with the largest element of $d_{1}$ replaced by the largest in $b$. Next let $d_{3}$ be as $d_{2}$, but with an element in $d_{2}$ which is not in $b$ (if there is one) replaced by an element in $b$ not in $d_{2}$; this last procedure is continued until we arrive at $d_{v}=b$. Here $v \leqslant k$. Then all $Q_{d_{v}}$ contain $Q_{a}$, so from the special case of (2.1) shown above

$$
\left|P_{d_{i}}-P_{d_{i-1}}\right| \leqslant c|b|^{k}, \quad x \in l Q_{d_{i}} \cap l Q_{d_{i-1}} \supset l Q_{a}=l Q_{a} \cap l Q_{b} .
$$

Using $\left|P_{a}-P_{b}\right| \leqslant \sum_{i=1}^{v}\left|P_{d_{i}}-P_{d_{i-1}}\right|$, we get (2.1) in the case $Q_{a} \subset Q_{b}$. Finally, the general case follows upon writing $\left|P_{a}-P_{b}\right| \leqslant\left|P_{a}-P_{e}\right|+$
$\left|P_{e}-P_{b}\right|$, where $e$ is a set consisting of $k+1$ elements from $a \cup b$, among them the smallest and largest from $a \cup b$, so that $Q_{a}, Q_{b} \subset Q_{e}$.

Remark 1. If $f \in A_{k}^{*}(F), x \in Q_{a} \cap F$, and $P_{x}$ is a polynomial interpolating $f$ at $x$ and $k$ points of $a$, then Lemma 1 shows that $\left|P_{x}(x)-P_{a}(x)\right| \leqslant c|a|^{k}$ so, since $P_{x}(x)=f(x)$,

$$
\begin{equation*}
\left|f(x)-P_{a}(x)\right| \leqslant c|a|^{k}, \quad x \in Q_{a} \cap F \tag{2.3}
\end{equation*}
$$

In particular this shows, as soon as Theorem 2 is proved, that the only-if part of Proposition 1 holds. The converse follows easily from the characterization of $\Lambda_{k}(R)$ in Definition 2.

Remark 2. We shall deduce some more facts concerning $\Lambda_{k}^{*}(F)$ using Newton's interpolation formula. It may be written

$$
\begin{equation*}
P\left(a_{0}, a_{1}, \ldots, a_{m} ; f\right)(x)=\sum_{i=0}^{m} P^{(i)}\left(a_{0}, a_{1}, \ldots, a_{i} ; f\right) \prod_{j=0}^{i-1}\left(x-a_{j}\right) / i!, \tag{2.4}
\end{equation*}
$$

where $P\left(a_{0}, a_{1}, \ldots, a_{i} ; f\right)$ is the polynomial interpolating $f$ at the distinct points $a_{0}, a_{1}, \ldots, a_{i}$. Combining (2.4) with (1.6) we obtain that if $f \in \Lambda_{k}^{*}(F)$ and $Q$ has length $\leqslant c_{1}$,

$$
\begin{equation*}
\left|P_{a}(x)\right| \leqslant c\left(1+\max (\ln (1 /|a|), 0), \quad x \in Q, \text { if } Q_{a} \subset Q\right. \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|P_{a(v)}(x)\right| \leqslant c, \quad x \in Q, v<k, \text { if } Q_{a(v)} \subset Q . \tag{2.6}
\end{equation*}
$$

From (2.4) we also obtain the following result of a technical nature, which we will use in the next section. If $Q_{a} \subset Q$, where $Q$ has diameter 1 and center $x_{0}$, and $b$ is obtained from $a$ by replacing the largest element $\gamma$ of $a$ by $\gamma+1$, and $P_{b}$ interpolates $f$ at the points of $b$ from $a$ and to $f(\gamma)$ at $\gamma+1$, then

$$
\begin{equation*}
\left|P_{b}^{(k)}\right| \leqslant c \tag{2.7}
\end{equation*}
$$

if $f \in A_{k}^{*}(F)$. This follows if one applies (2.4) to $P_{b}$ taking $x=a_{m}=\gamma+1$ and using (1.6). We also obtain, again using (2.4), that $\left|P_{b}(x)\right| \leqslant c, x \in Q$ if $Q_{b} \subset Q$ where $Q$ is as in (2.5).

The remaining remarks concern the space $A_{k}(F)$.
Remark 3. In the definition of $\Lambda_{k}(F)$ (Definition 2) we may as well assume that $Q$ and $Q^{\prime}$ are centered in $F$, that $Q^{\prime} \subset Q$, and that all cubes involved have sides of length $\leqslant 1$. In order to see this, assume that (1.2)-(1.4) hold with these restrictions on $Q$ and $Q^{\prime}$. First of all, one may assume that they hold for any $Q$, which is seen by setting $P_{Q}=0$ if $Q$ has
sides of length $>1$ (note that, by (1.2)-(1.4), $|f(x)| \leqslant c, x \in F$, and $\left.\left|P_{Q^{\prime}}(x)\right| \leqslant c, x \in Q^{\prime}, \delta^{\prime}<1\right)$. If $Q \cap F \neq \varnothing$ but $Q$ is not necessarily centered in $F$, let $\delta$ be the length of a side of $Q$. Take a cube $R$ with center in $F$ and sides, parallel to those of $Q$, of length $2 \delta$; then $Q \subset R$. Define $P_{Q}$ on $Q$ by $P_{Q}=P_{R}$, where $P_{R}$ is the polynomial associated to $R$ by our assumption. Then, of course, $P_{Q}$ satisfies (1.2) and (1.4), and we shall prove (1.3). Let $Q$ and $Q^{\prime}$ intersect $F$ and let $\delta^{\prime}<\delta$. Let $R^{\prime \prime}$ be a cube with the same center as $R$ containing both $R$ and $R^{\prime}$, with sides of length not exceeding a fixed constant times $\delta$. Then $\left|P_{Q}-P_{Q^{\prime}}\right|=\left|P_{R}-P_{R^{\prime}}\right| \leqslant\left|P_{R}-P_{R^{\prime \prime}}\right|+\left|P_{R^{\prime \prime}}-P_{R^{\prime}}\right| \leqslant c \delta$ in $Q \cap Q^{\prime}$.

Remark 4. Let $f \in A_{k}(F)$ where $F \subset R$, let $Q, Q^{\prime}, P_{Q}$, and $P_{Q^{\prime}}$ be as in Definition 2 with $Q \cap Q^{\prime} \neq \varnothing$, and assume that $\delta>\delta^{\prime}$. Then

$$
\begin{equation*}
\left|P_{Q}^{(k)}-P_{Q^{\prime}}^{(k)}\right| \leqslant c\left(1+\ln \left(\delta / \delta^{\prime}\right)\right) . \tag{2.8}
\end{equation*}
$$

It is readily seen that it is enough to prove (2.8) in case $Q^{\prime} \subset Q$ and $Q$ and $Q^{\prime}$ have an endpoint $x_{0}$ in common (insert $\pm P_{Q \cup Q^{\prime}}^{(k)}$ in $P_{Q}^{(k)}-P_{Q^{\prime}}^{(k)}$ if $Q^{\prime} \not \subset Q$ ). Let $m$ be the first integer such that $e^{m \delta^{\prime}} \geqslant \delta$, then $e^{m-1} \delta^{\prime}<\delta$ so $m-1+\ln \delta^{\prime}<\ln \delta$ or $m<1+\ln \left(\delta / \delta^{\prime}\right)$. Let $Q_{v}, v=0,1, \ldots, m-1$, be the intervals with one endpoint $x_{0}$, containing $Q^{\prime}$, and of length $e^{v} \delta^{\prime}$, and put $Q_{m}=Q$. Write $P_{Q}^{(k)}-P_{Q}^{(k)}=\sum_{i=1}^{m}\left(P_{Q_{i}}^{(k)}-P_{Q_{i-1}}^{(k)}\right)$. By (1.3) and Markov's inequality we have $\left|P_{Q_{i}}^{(k)}-P_{Q_{i-1}}^{(k)}\right| \leqslant c$, so we obtain (2.8). From (2.8) we may also obtain that

$$
\begin{equation*}
\left|P_{Q^{\prime}}^{(k)}\right| \leqslant c\left(1+\ln \left(1 / \delta^{\prime}\right)\right), \quad \delta^{\prime}<1 \tag{2.9}
\end{equation*}
$$

by taking as $Q$ an interval with length 1 containing $Q^{\prime}$. Then $\left|P_{Q}^{(k)}\right| \leqslant c$ by (1.4) and Markov's inequality, and (2.9) follows upon writing $P_{Q}^{(k)}=P_{Q}^{(k)}-$ $P_{Q}^{(k)}+P_{Q}^{(k)}$.

Remark 5. If $F=R$, the polynomials $P_{Q}$ in Definition 2 may be chosen to satisfy not only (1.2), (1.3), and (1.4), but also ( $c_{1}$ is a constant)

$$
\begin{array}{ll}
\left|f^{(j)}-P_{Q}^{(j)}\right| \leqslant c \delta^{k-|j|}, & j<k, \quad x \in Q \\
\left|P_{Q}^{(k)}-P_{Q^{\prime}}^{(k)}\right| \leqslant c, & \delta \leqslant c_{1} \delta^{\prime}, \quad Q^{\prime} \subset Q \tag{2.11}
\end{array}
$$

and

$$
\begin{equation*}
\left|P_{Q}^{(j)}\right| \leqslant c, \quad|j| \leqslant k-1, \quad \delta=1 . \tag{2.12}
\end{equation*}
$$

An analogy of this holds if $F=R^{n}$, and actually, in a certain sense, if $F \subset R^{n}$. See [2].

## 3. Proof of Theorem 2

In the proof, we shall not say anything explicitly about equivalence of norms. However, all calculations are such that we actually obtain not only that $\Lambda_{k}(F)=\Lambda_{k}^{*}(F)$, but also that (1.7) holds.

We shall first prove that if $f \in \Lambda_{k}(F)$, then $f \in \Lambda_{k}^{*}(F)$. It is enough to prove this if $F=R$, since if $f \in \Lambda_{k}(F)$, then by Theorem 1 there exists an extension $E f$ of $f$ to $R$, lying in $\Lambda_{k}(R)$. If this implies that $E f \in A_{k}^{*}(R)$, then by the definition of the $\Lambda_{k}^{*}$-spaces, the restriction of $E f$ to $F$, i.e., $f$, belongs to $\Lambda_{k}^{*}(F)$.

So, let us assume that $f \in A_{k}(R)$, and let $a=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ and $b=$ $\left\{a_{0}, a_{1}, \ldots, a_{k-1}, b_{k}\right\}$, where $a_{0}, a_{1}, \ldots, a_{k}$, and $b_{k}$ are points from $R$ such that $|b| \geqslant|a|$. We start by proving (1.5), i.e.,

$$
\begin{equation*}
\left|P_{a}^{(k)}-P_{b}^{(k)}\right| \leqslant c(1+\ln (|b| /|a|)) . \tag{3.1}
\end{equation*}
$$

Recall that $Q_{a}$ and $Q_{b}$ are the smallest intervals containing $a$ and $b$, respectively. Let $P_{Q_{a}}$ and $P_{Q_{b}}$ be polynomials associated to $Q_{a}$ and $Q_{b}$, and to $f$, as in the definition of $\Lambda_{k}(F)$. We insert these in $P_{a}^{(k)}-P_{b}^{(k)}$ and obtain

$$
\left|P_{a}^{(k)}-P_{b}^{(k)}\right| \leqslant\left|P_{a}^{(k)}-P_{Q_{a}}^{(k)}\right|+\left|P_{Q_{a}}^{(k)}-P_{Q_{b}}^{(k)}\right|+\left|P_{Q_{b}}^{(k)}-P_{b}^{(k)}\right| .
$$

By (2.8), $\left|P_{Q_{a}}^{(k)}-P_{Q_{b}}^{(k)}\right| \leqslant c(1+\ln (|b| /|a|))$. To estimate $P_{a}^{(k)}-P_{Q_{a}}^{(k)}$ we use that, since $P_{a}-P_{Q_{a}}$ interpolates $f-P_{Q_{a}}$ in $a_{0}, a_{1}, \ldots, a_{k}$, we may write (for $k>1$; for $k=1$ use the pointwise representation)

$$
\begin{align*}
P_{a}^{(k)}-P_{Q_{a}}^{(k)}= & \frac{k!}{a_{k}-a_{0}} \int_{0}^{1} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{k-2}}\left\{\left(f-P_{Q_{a}}\right)^{(k-1)}\right. \\
& \times\left(a_{1}+\sum_{i=1}^{k-1}\left(a_{i+1}-a_{i}\right) t_{i}\right)-\left(f-P_{Q_{a}}\right)^{(k-1)} \\
& \left.\times\left(a_{0}+\sum_{i=1}^{k-1}\left(a_{i}-a_{i-1}\right) t_{i}\right)\right\} d t_{1}, d t_{2}, \ldots, d t_{k-1} \tag{3.2}
\end{align*}
$$

This is a well-known representation (see, e.g., [3]; (3.2) may be obtained by combining the formulas (1.4) and (1.6) in that paper). By Remark 5 in Section 2, we may assume that $\left|f^{(k-1)}(x)-P_{Q_{a}}^{(k-1)}(x)\right| \leqslant c|a|, x \in Q_{a}$, and assuming for the moment that $a_{0} \leqslant a_{1} \leqslant \cdots \leqslant a_{k}$, we obtain from (3.2) that $\left|P_{Q}^{(k)}-P_{Q_{a}}^{(k)}\right| \leqslant c$; hence we also have $\left|P_{b}^{(k)}-P_{Q_{b}}^{(k)}\right| \leqslant c$. Altogether, we have proved (3.1).

Next we shall see that (1.6) holds. Since $\left|f^{(k-1)}\right| \leqslant c$ it follows from (3.2) that $\left|P_{a}^{(k)}\right| \leqslant c$ if $|a|>1$ (use (3:2) with $f-P_{Q_{a}}$ replaced by $f$ and $P_{a}^{(k)}-P_{Q_{a}}^{(k)}$ replaced by $P_{a}^{(k)}$. If $|a|<1$ we write $\left|P_{a}^{(k)}\right| \leqslant\left|P_{a}^{(k)}-P_{Q_{a}}^{(k)}\right|+\left|P_{Q_{a}}^{(k)}\right|$; then by what we proved above $\left|P_{a}^{(k)}-P_{Q a}^{(k)}\right| \leqslant c$, and by (2.9) $\left|P_{Q a}^{(k)}\right| \leqslant c(1+$
$\ln (1 /|a|))$. Thus we have shown that $\left|P_{a}^{(k)}\right| \leqslant c(1+\max (0, \ln (1 /|a|)))$. Of course $\left|P_{a(0)}^{(0)}(x)\right|=|f(x)| \leqslant c$, and $\left|P_{a(y)}^{(v)}\right| \leqslant c$ may be obtained immediately from formula (1.6) in [3] and the fact that $\left|f^{(j)}\right| \leqslant c,|j|<k$.

In the proof of the converse part of Theorem 2, we assume that $F$ contains at least $k+1$ points. This is permitted since a function in $\Lambda_{k}^{*}(F)$ is bounded, by (1.6), and it is easy to see that a bounded function on a finite set $F$ is in $\Lambda_{k}(F)$. We need the following construction, essentially given in [7]. Let $x_{0} \in F$ be an isolated point of $F$. We associate to $x_{0}$ a set $Q\left(x_{0}\right)=$ $\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ consisting of $k+1$ distinct points from $F$ in the following way.
Let $a_{0}=x_{0}$. Let $a_{1}$ be the element of $F$ closest to $a_{0}$ (if there are two, take the one to the right), let $a_{2}$ be the point of $F$ closest to $\left\{a_{0}, a_{1}\right\}$ (again, if two, take the one to the right), let $a_{3}$ be the point of $F$ closest to $\left\{a_{0}, a_{1}, a_{2}\right\}$, and so on. We continue this procedure until we arrive at a limit point of $F$, or until $k+1$ points are chosen. If we arrive at a limit point $a_{i}$, then choose $a_{i+1}, \ldots, a_{k}$ from $F$ according to some rule so that they are closer to $a_{i}$ then any of the points $a_{0}, a_{1}, \ldots, a_{i-1}$.

Let $d\left(Q\left(x_{0}\right)\right)$ denote the diameter of $Q\left(x_{0}\right)$. We need the following fact about this construction (cf. [3, Lemma 3.4] and [7, Lemma 8]).

Lemma 2. Let $x_{0}$ be an isolated point of $F$, and let $y_{0} \in F$. Suppose that $d\left(Q\left(x_{0}\right)\right)>k\left|x_{0}-y_{0}\right|$. Then $y_{0}$ is isolated, and $Q\left(x_{0}\right)=Q\left(y_{0}\right)$.

Proof. Let $v$ be the first integer such that the distance from $a_{v+1}$ to $\left\{a_{0}, a_{1}, \ldots, a_{v}\right\}=S_{v}$ is greater than $\left|x_{0}-y_{0}\right|$. The integer $v$ exists since $d\left(Q\left(x_{0}\right)\right)>k\left|x_{0}-y_{0}\right|$. Then $a_{0}, a_{1}, \ldots, a_{v}$ are isolated, and $y_{0}$ must be one of them. Furthermore, if we enumerate the points of $S_{v}$ from left to right, the distance between two consecutive points is less than or equal to $\left|x_{0}-y_{0}\right|$. But this means that when constructing $Q\left(y_{0}\right)$, the first $v+1$ points will be those of $S_{v}$, which means that $Q\left(x_{0}\right)=Q\left(y_{0}\right)$.

Assume now that $f \in \Lambda_{k}^{*}(F)$. We shall prove that $f \in \Lambda_{k}(F)$ by defining, for each interval $Q$ of length $\leqslant 1$ centered in $F$ (cf. Remark 3) a polynomial $P_{Q}$ satisfying (1.2), (1.3), and (1.4) in Definition 2. Let $Q$ have length $\delta$ and center $x_{0} \in F$. When defining $P_{Q}$, we consider two different cases. Case 1: $Q$ contains at least $k+1$ points from $F$. Case 2: $Q$ contains at most $k$ points from $F$.

In Case 1, we define $P_{Q}$ in the following way. Let $\alpha$ be the point of $F \cap Q$ furthest away from $x_{0}$ (if there are two, take the one to the right). Put $a_{0}=\alpha$. Let $a_{1} \in F \cap Q$ be the point furthest away from $a_{0}$, and let, for $i=2$, $3, \ldots, k, a_{i} \in F \cap Q$ be furthest away from $\left\{a_{0}, a_{1}, \ldots, a_{i-1}\right\}$. If there are several possibilities, take the one furthest to the right; however, it is not important how $a_{2}, a_{3}, \ldots, a_{k}$ are chosen, as long as they are chosen according to some rule. Put $a=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$. Next, let $\beta$ be the point in $F$, but not in the
interior of $Q$, closest to $Q_{a}$, if there is such a point with distance $\leqslant 1$ from $a$. If there are two, take the one to the right, and if there are none, put $\beta=\gamma+1$, where $\gamma$ is the largest element of $F \cap Q$. Let $b$ be as $a$, but with $a_{0}$ or $a_{1}$ replaced by $\beta$, in such a way that $Q_{a} \subset Q_{b}$, and let $P_{a}$ and $P_{b}$ be the polynomials of degree $\leqslant k$ interpolating to $f$ at $a$ and $b$, respectively. If $\beta=\gamma+1$, let instead $P_{b}$ have the value $f(\gamma)$ at $\beta$. By (1.6) and (2.7) we have $\left|P_{a}^{(k)}-P_{b}^{(k)}\right| \leqslant c(1+\ln (1 /|a|))+c \leqslant c(1+\ln |b| /|a|)$. As a consequence, the formula (2.2) which we use below is valid also in this case, which will mean that we do not have to treat it separately. If $a=b$, put $\theta=1$; otherwise let $\theta$ be given by

$$
\begin{equation*}
\theta \ln |a|+(1-\theta) \ln |b|=\ln r, \tag{3.3}
\end{equation*}
$$

where $r$ is the length of $Q \cap Q_{b}$.
We define $P_{Q}$ in Case 1 by

$$
\begin{equation*}
P_{Q}=\theta P_{a}+(1-\theta) P_{b} \tag{3.4}
\end{equation*}
$$

For future reference, we note that by (3.3) we have, if $a \neq b$,

$$
\begin{equation*}
\theta=\ln (|b| / r) / \ln (|b| /|a|) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
1-\theta=\ln (r /|a|) / \ln (|b| /|a|) . \tag{3.6}
\end{equation*}
$$

Also, if $x \in Q$ then by (2.2) we have $\left|P_{a}-P_{b}\right| \leqslant c \delta^{k}(1+\ln (|b| /|a|))$, so

$$
\begin{equation*}
\left|P_{a}(x)-P_{b}(x)\right| \leqslant c \delta^{k}, \quad x \in Q, \quad|b| \leqslant 2|a| . \tag{3.7}
\end{equation*}
$$

In Case 2, associate $Q\left(x_{0}\right)$ to $x_{0}$ as in Lemma 2. If $d\left(Q\left(x_{0}\right)\right)>k / 2$, let $a_{\mu+1}$ be the first point in the construction of $Q\left(x_{0}\right)$ such that the distance from $a_{\mu+1}$ to $T\left(x_{0}\right)=\left\{a_{0}, a_{1}, \ldots, a_{\mu}\right\}$ is $>\frac{1}{2}$. Put $d=Q\left(x_{0}\right)$ and $d(\mu)=T\left(x_{0}\right)$, let $P_{d}$ and $P_{d(\mu)}$ be polynomials of degree $\leqslant k$ and $\leqslant \mu$, respectively, interpolating to $f$ at the points of $d$ and $d(\mu)$, and define $P_{Q}$ by

$$
\begin{equation*}
P_{Q}=P_{d} \quad \text { if } \quad d\left(Q\left(x_{0}\right)\right) \leqslant k / 2 \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{Q}=P_{d(\mu)} \quad \text { otherwise. } \tag{3.9}
\end{equation*}
$$

For future reference, we note that if $d\left(Q\left(x_{0}\right)\right)>k / 2$ and $\left|x_{0}-y_{0}\right|<\frac{1}{2}$, then $T\left(x_{0}\right)=T\left(y_{0}\right)$. This follows from the proof of Lemma 2, which shows that for some $v \leqslant \mu$, the first $v$ points chosen in the definition of $Q\left(x_{0}\right)$ form the same set as the first $v$ chosen in the definition of $Q\left(y_{0}\right)$.

We shall now show that (1.2)-(1.4) hold under the assumptions that both $Q$ and $Q^{\prime}$ are centered in $F, Q^{\prime} \subset Q$, and $\delta \leqslant 1$ (see Remark 3 ), and start with (1.3), i.e., $\left|P_{Q}-P_{Q^{\prime}}\right| \leqslant c \delta^{k}, x \in Q \cap Q^{\prime}$. Notationally, we put a prime on concepts related to $Q^{\prime}$; the center of $Q^{\prime}$ is for example denoted by $x_{0}^{\prime}$. Three cases may occur: (i) Both $P_{Q}$ and $P_{Q^{\prime}}$ are defined by Case 1; (ii) $P_{Q}$ is given by Case 1 but $P_{Q^{\prime}}$ by Case 2 , and $P_{Q^{\prime}}$ is defined by means of (3.8); or (iii) both $P_{Q}$ and $P_{Q^{\prime}}$ are given by Case 2 . We treat the cases (i), (ii), and (iii) separately.

In case (i) we have

$$
P_{Q}-P_{Q^{\prime}}=\theta P_{a}+(1-\theta) P_{b}-\theta^{\prime} P_{a^{\prime}}-\left(1-\theta^{\prime}\right) P_{b^{\prime}}
$$

Assume first that the interior of $Q^{\prime}, \operatorname{Int}\left(Q^{\prime}\right)$, contains $Q \cap F$. Then $a=a^{\prime}$ and $b=b^{\prime}$, so $P_{Q}-P_{Q^{\prime}}=\left(\theta-\theta^{\prime}\right)\left(P_{a}-P_{b}\right)$. Using (2.2) for $x \in Q^{\prime}$ (then $\left|x-a_{i}\right| \leqslant \delta^{\prime}$ ) and (3.5) one obtains (use $\delta / 2 \leqslant r \leqslant \delta$ )

$$
\left|\left(\theta-\theta^{\prime}\right)\left(P_{a}-P_{b}\right)\right| \leqslant c \ln \left(2 \delta / \delta^{\prime}\right) / \ln (|b| /|a|) \delta^{\prime k}(1+\ln (|b| /|a|))
$$

Thus, if $|b| \geqslant 2|a|$, since $\delta^{k} \ln \left(\delta / \delta^{\prime}\right) \leqslant \delta^{k}$, we have $\left|P_{Q}-P_{Q^{\prime}}\right| \leqslant c \delta^{k}, x \in Q^{\prime}$. If $|b| \leqslant 2|a|$, this estimate follows directly from (3.7). In case (i), when $\operatorname{Int}\left(Q^{\prime}\right) \not \supset Q \cap F$, we instead write

$$
P_{Q}-P_{Q^{\prime}}=(1-\theta)\left(P_{b}-P_{a}\right)+\theta^{\prime}\left(P_{b^{\prime}}-P_{a^{\prime}}\right)+P_{a}-P_{b^{\prime}} .
$$

Since $x_{0}^{\prime}$, the center of $Q^{\prime}$, is in $Q_{a}$ and $\operatorname{Int}\left(Q^{\prime}\right) \nrightarrow Q \cap F$, it is easily seen that $3 Q_{a} \supset Q^{\prime}$, so $\left|x-a_{i}\right| \leqslant 2|a|$ if $x \in Q^{\prime}$. With this in mind, one obtains for $x \in Q^{\prime}$ from (2.2) and (3.6) that $(1-\theta)\left|P_{b}-P_{a}\right| \leqslant c \ln (\delta /|a|) / \ln (|b| /|a|)$ $|a|^{k}(1+\ln (|b| /|a|)) \leqslant c \delta^{k}$ if $|b| \geqslant 2|a|$. If not, we use instead (3.7). Next, by (2.2) and (3.5) we obtain for $x \in Q^{\prime}$, using the fact that $r^{\prime} \geqslant \delta^{\prime} / 2, \theta^{\prime}\left|P_{b^{\prime}}-P_{a^{\prime}}\right| \leqslant c \ln \left(2\left|b^{\prime}\right| / \delta^{\prime}\right) / \ln \left(\left|b^{\prime}\right| /\left|a^{\prime}\right|\right) \delta^{\prime k}\left(1+\ln \left(\left|b^{\prime}\right| /\left|a^{\prime}\right|\right)\right) \leqslant c \delta^{\prime k}$ $\ln \left(\left|b^{\prime}\right| / \delta^{\prime}\right)$ if $\left|b^{\prime}\right| \geqslant 2\left|a^{\prime}\right|$ (if not, we again estimate by means of (3.7)). Since $\operatorname{Int}\left(Q^{\prime}\right) \not \supset Q \cap F$, we have $\left|b^{\prime}\right| \leqslant \delta$, and hence $\theta^{\prime}\left|P_{b^{\prime}}-P_{a^{\prime}}\right| \leqslant c \delta^{k}$. Finally, since it is easily seen that $3 Q_{a} \cap 3 Q_{b^{\prime}}$ contains $Q^{\prime}$ if $\operatorname{Int}\left(Q^{\prime}\right) \not \supset Q \cap F$, Lemma 1 gives $\left|P_{a}-P_{b^{\prime}}\right| \leqslant c \delta^{k}, x \in Q^{\prime}$. This completes the proof of (1.3) in case (i).

In case (ii), $\quad P_{Q}-P_{Q^{\prime}}=\theta P_{a}+(1-\theta) P_{b}-P_{d^{\prime}}=(1-\theta)\left(P_{b}-P_{a}\right)+$ $P_{a}-P_{d^{\prime}}$. Since now $Q^{\prime} \not \supset Q \cap F$, the calculations above give ( $1-\theta$ ) $\left|P_{b}-P_{a}\right| \leqslant c \delta^{k}, x \in Q^{\prime}$. It is easily seen that, by construction, $\left|d^{\prime}\right| \leqslant(k / 2) \delta$, so by Lemma $1,\left|P_{a}-P_{d^{\prime}}\right| \leqslant c \delta^{k}, x \in 3 Q_{a} \cap 3 Q_{d^{\prime}} \supset Q^{\prime}$. Note that $3 Q_{d^{\prime}} \supset Q^{\prime}$ follows from the fact that $Q_{d^{\prime}}$ contains points outside $Q^{\prime}$ for if not $Q^{\prime}$ would contain $k+1$ points.

Finally we consider case (iii). If $d\left(Q\left(x_{0}\right)\right)>(k / 2) \delta$, then, since $\left|x_{0}-x_{0}^{\prime}\right| \leqslant \delta / 2$, it follows from Lemma 2 that $Q\left(x_{0}\right)=Q\left(x_{0}^{\prime}\right)$. If furthermore $d\left(Q\left(x_{0}\right)\right)>k / 2$, then, by the comments after (3.9), $T\left(x_{0}\right)=T\left(x_{0}^{\prime}\right)$. Thus, by
the definition of $P_{Q}$ and $P_{Q^{\prime}}$ in Case 2, $P_{Q}=P_{Q^{\prime}}$. On the other hand, if $d\left(Q\left(x_{0}\right)\right) \leqslant(k / 2) \delta$, then also $d\left(Q\left(x_{0}^{\prime}\right)\right) \leqslant(k / 2) \delta$, both $P_{Q}$ and $P_{Q^{\prime}}$ are defined using (3.8), and Lemma 1 gives $\left|P_{Q}-P_{Q}\right|=\left|P_{d}-P_{d d}\right| \leqslant c \delta^{k}$, $x \in Q^{\prime} \subset 3 Q_{d} \cap 3 Q_{d^{\prime}}$. With this, (1.3) is proved also in case (iii).

The proof of (1.2) is now obtained from (1.3) as follows. If $x$ is a cluster point of $Q \cap F$, let $Q^{\prime}$ be a subinterval of $Q$ with center in $F$ and one endpoint $x$, containing at least $k+1$ points from $F$. Then $f(x)=P_{Q^{\prime}}(x)$, so, by (1.3), $\left|f(x)-P_{Q}(x)\right|=\left|P_{Q}(x)-P_{Q}(x)\right| \leqslant c \delta^{k}$. On the other hand, if $x$ is an isolated point of $Q \cap F$, consider, if $x \neq x_{0}\left(x=x_{0}\right.$ yields $\left.f(x)=P_{Q}(x)\right)$, an interval $Q^{\prime \prime} \subset 2 Q$ centered at $x$ containing only $x$ from $Q \cap F$. Then $f(x)=P_{Q^{\prime \prime}}(x)$, and since $Q^{\prime \prime} \subset 2 Q$ we get

$$
\left|f(x)-P_{Q}(x)\right| \leqslant\left|P_{Q^{\prime \prime}}(x)-P_{2 Q}(x)\right|+\left|P_{2 Q}(x)-P_{Q}(x)\right| \leqslant c \delta^{k}
$$

if $2 Q$ has length $\leqslant 1$; otherwise (1.2) follows easily from (1.6), (1.3), and (1.4), which is proved below.

Finally we prove (1.4). If $P_{Q}$ is defined by Case 1 , then $\left|P_{Q}\right| \leqslant \theta\left|P_{a}\right|+$ $(1-\theta)\left|P_{b}\right|$. Here, $\left|P_{b}\right| \leqslant c$ and $\left|P_{a}\right| \leqslant c$ if $|a| \geqslant \frac{1}{4}$ (see (2.5) and the discussion in the end of Remark 2). If $|a| \leqslant \frac{1}{4}$ we get by (3.5) and (2.5) that

$$
\theta\left|P_{a}\right| \leqslant c \ln |b| / \ln (|b| /|a|)(1+\ln (|b| /|a|)) \leqslant c .
$$

On the other hand, if $P_{Q}$ is defined by Case 2 , then $P_{Q}=P_{d}$ where $1 / 2 \leqslant$ $|d| \leqslant k / 2$ so $|P| \leqslant c$ by (2.5), or $P_{Q}=P_{d(\mu)}$ where $d(\mu)$ has length $\leqslant k / 2$, so $\left|P_{Q}\right| \leqslant c$ because of (2.6). This completes the proof of Theorem 2.
Now, we also obtain Theorem 3. By Theorem 1 and the comments after it, every $f \in \Lambda_{k}(F)$ has an extension $E f$ in $\Lambda_{k}\left(R^{n}\right)$ with $\|E f\|_{A_{k}\left(R^{n}\right)} \leqslant$ $c\|f\|_{A_{k}(F)}$. The extension $E f$ is constructed, e.g., with aid of the approximating polynomials $\left\{P_{Q}\right\}$ in Definition 2 (see [1, 2, 5]: however, the construction given there is not explicitly in terms of $\left\{P_{Q}\right\}$; combine, for $k=1$, e.g., the extension given on p. 168 in [1] with Remark 4.5 in that paper). If $\left\{P_{Q}\right\}$ is associated to $f$ and $\left\{\tilde{P}_{Q}\right\}$ to $\tilde{f}$, and $E f$ and $E f$ are obtained by means of these approximations, then $E f+E f$ is equal to $E(f+\tilde{f})$, if $E(f+\tilde{f})$ is obtained by means of the approximation $\left\{P_{Q}+\widetilde{P}_{Q}\right\}$ to $f+\widetilde{f}$. Now, if $F \subset R$ and $f \in \Lambda_{k}(F)=\Lambda_{k}^{*}(F)$, associate $P_{Q}$ to $f$ as in the proof of the statement $\left(f \in \Lambda_{k}^{*}(F) \Rightarrow f \in \Lambda_{k}(F)\right)$ above. Then, by construction, $\left\{P_{Q}\right\}$ is associated to $f$ in a linear way, and if $E f$ is constructed by means of this approximation, one obtains Theorem 3.

## References

[^1]2. A. Jonsson and H. Wallin, "Local Polynomial Approximation and Lipschitz Type Conditions on General Closed Sets," Departments of Mathematics, University of Umeå, No. 1, 1980.
3. J. Merrien, Prolongateurs de fonctions différentiables d'une variable réelle, J. Math. Pures Appl. 45 (1966), 291-309.
4. E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Univ. Press, Princeton, 1970.
5. H. Wallin, The trace to closed sets of the Zygmund class of quasi-smooth functions in $R^{n}$, in "Multivariate Approximation," (D. C. Handscomb, Ed.), pp. 83-93, Academic Press, London, 1978.
6. H. Whitney, Analytic extensions of differentiable functions defined on closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89.
7. H. Whitney, Differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 369-387.


[^0]:    * This work has been supported by the Swedish Natural Sciences Research Council.

[^1]:    1. A. Jonsson and H. Wallin, The trace to closed sets of functions with second difference of order $O(h)$, J. Approx. Theory 26 (1979), 159-184.
