The Trace of the Zygmund Class $\Lambda_k(R)$ to Closed Sets and Interpolating Polynomials*

ALF JONSSON

Institute of Mathematics, University of Umeå, S-901 87 Umeå, Sweden

Communicated by Oved Shisha

Received April 30, 1981; revised August 11, 1983

0. INTRODUCTION

Let $\Lambda_k(R^n)$ denote the Zygmund class of continuous functions satisfying $|\Delta_h^{k+1}f(x)| \leq c |h|^k$ and $|f(x)| \leq c$, $x, h \in R^n$, where $\Delta_h^{k+1}f(x)$ is the difference of order k+1 with step h at x (Definition 1 below). In [1], with further development in [2] (see also [5]), the author together with H. Wallin characterized the trace $\{f \mid F; f \in \Lambda_k(R^n)\}$ of $\Lambda_k(R^n)$ to an arbitrary closed set $F \subset R^n$ by means of certain approximation properties (Theorem 1 below). The characterizations given in those papers, however, are non-constructive. One consequence of this is that the extension theorem which is the main part of Theorem 1 is not obtained by means of a linear extension operator.

In this paper we give a characterization of the trace of $\Lambda_k(R)$ to an arbitrary closed subset F of R, which is of a more constructive character, using interpolating polynomials (Definition 3 and Theorem 2); observe that we now work in one dimension. As a consequence, we obtain a bounded, linear extension operator from the trace space to $\Lambda_k(R)$ (Theorem 3). In Proposition 1, we give a characterization of $\Lambda_k(R)$ by means of interpolating polynomials, which we have previously seen for k = 1 only.

The problem studied in this paper is similar to one studied by H. Whitney in [7], where a characterization of the trace of $C^m(R)$, the class of *m* times continuously differentiable functions, to closed subsets of *R* was given with the aid of interpolating polynomials. Whitney's result has been generalized by J. Merrien in [3]. One could say that the present paper is related to [1] in the same way as Whitney's paper [7] is related to his paper [6], where he proves his classical extension theorem. To characterize the trace of the Lipschitz spaces $\Lambda_{\alpha}(R)$, α non-integer (cf. [4], Chap. VI), is

^{*} This work has been supported by the Swedish Natural Sciences Research Council.

a problem which is very close to the one studied in [3] and [7] and hence we consider the integer case only.

It is an open problem to obtain results similar to those in this paper, and to those in [7], in several dimensions.

1. DEFINITIONS AND RESULTS

We first give one of many possible definitions of the classical Zygmund (or Lipschitz) space $\Lambda_k(\mathbb{R}^n)$. It is important to note that we deal with the spaces which are defined by means of a difference of order k + 1 and not of order k, which leads to a different space (see, e.g., [4, p. 141]). By $\Delta_h^m f(x)$, $x, h \in \mathbb{R}^n$, m positive integer, we denote the difference of order m with step h at the point x, i.e., $\Delta_h^1 f(x) = f(x+h) - f(x)$ and, for m > 1, $\Delta_h^m f(x) = \Delta_h^1 (\Delta_h^{m-1} f)(x)$.

DEFINITION 1 (the spaces $\Lambda_k(\mathbb{R}^n)$). Let f be defined on \mathbb{R}^n . Then $f \in \Lambda_k(\mathbb{R}^n)$, k positive integer, if and only if f is continuous and for $x, h \in \mathbb{R}^n$ and for some constant M satisfies

$$|\mathcal{\Delta}_{h}^{k+1}f(x)| \leq M |h|^{k} \quad \text{and} \quad |f(x)| \leq M.$$

$$(1.1)$$

The norm of f in $\Lambda_k(\mathbb{R}^n)$ is defined as the infimum of the constants M in (1.1). Alternatively, $\Lambda_k(\mathbb{R}^n)$ may be defined as the space consisting of all functions f which have continuous and bounded derivatives up to order k-1, and with derivatives $f^{(j)}$ of order k-1 satisfying $|\Delta_h^2 f^{(j)}(x)| \leq M |h|$. Often spaces $\Lambda_\alpha(\mathbb{R}^n)$ are defined for $\alpha > 0$, but since our interest lies in the integer case (cf. the introduction) we restrict ourselves to $\Lambda_k(\mathbb{R}^n)$. Also, Definition 2 and Theorem 1 were in [2] given for spaces $\Lambda_\alpha(F)$, $\alpha > 0$, and also in a more general form from other aspects.

From now on, F will always denote a closed subset of R^n .

The spaces $\Lambda_k(F)$ in the next definition were given in [2, Theorem 1.3], see also [1, Remark 4.5]. In [2] we used a different notation. If $F = R^n$, the space $\Lambda_k(F)$ given by Definition 2 coincides with the space $\Lambda_k(R^n)$ in Definition 1, cf. [2, Proposition 1.3].

DEFINITION 2 (the space $\Lambda_k(F)$). Let f be defined on F. Then $f \in \Lambda_k(F)$, k positive integer, if and only if the following condition holds: for every closed cube Q in \mathbb{R}^n with $Q \cap F \neq \emptyset$ and with sides of length $\delta > 0$, there exists a polynomial P_Q of degree $\leq k$ such that

$$|f(x) - P_O(x)| \le c\delta^k, \qquad x \in Q \cap F; \tag{1.2}$$

if Q' is a cube with sides of length $\delta' > 0$, $Q' \cap F \neq \emptyset$, then

$$|P_Q(x) - P_{Q'}(x)| \le c(\max(\delta, \delta'))^k, \qquad x \in Q \cap Q', \tag{1.3}$$

and

$$|P_O(x)| \le c, \qquad x \in Q, \quad \text{if } \delta = 1. \tag{1.4}$$

The norm of $f \in A_k(F)$ is the infimum of the constants c, such that (1.2)-(1.4) hold for some collection $\{P_O\}$.

The interest in the spaces $\Lambda_k(F)$ comes from the following theorem, which says that $\Lambda_k(F)$ is the "trace" of the classical space $\Lambda_k(\mathbb{R}^n)$ to F. By f | F we denote the pointwise restriction to F of a continuous function f defined on \mathbb{R}^n .

THEOREM 1. $\Lambda_k(F) = \{f \mid F; f \in \Lambda_k(\mathbb{R}^n)\}.$

Theorem 1 is essentially an extension theorem, since if $f \in \Lambda_k(\mathbb{R}^n)$, then it is obvious from Definition 2 that $f \mid F \in \Lambda_k(F)$. The interesting part of Theorem 1 is the fact that if $g \in \Lambda_k(F)$, then there exists an extension fdefined on \mathbb{R}^n of g with $f \in \Lambda_k(\mathbb{R}^n)$; it is also known that the $\Lambda_k(\mathbb{R}^n)$ -norm of f is less than a constant times the $\Lambda_k(F)$ -norm of g, where the constant only depends on k and n. Theorem 1 was given in [2] (see Corollary 1.1 of that paper). However, that corollary is in its turn more or less a reformulation of the extension theorem in [1].

We now come to the results of this paper, and work from now on in one dimension. In the following definition k is a positive integer, a denotes a set consisting of k + 1 distinct points from F, $a = \{a_0, a_1, ..., a_k\}$, |a| is the diameter of the set a, Q_a is the smallest closed interval containing a, and P_a is the unique polynomial of degree $\leq k$ interpolating f at $a_0, a_1, ..., a_k$. The letter b is used analogously. Also, if $0 \leq v < k$, a(v) is a set of v + 1 distinct points from F, $P_{a(v)}$ is the polynomial of degree $\leq v$ interpolating f at the points of a(v), and $Q_{a(v)}$ is the smallest interval containing a(v).

DEFINITION 3 (the space $\Lambda_k^*(F)$). Let $F \subset R$ and let f be defined on F. Then $f \in \Lambda_k^*(F)$ if and only if to any a and b with k points in common and $|b| \ge |a|$

$$|P_a^{(k)} - P_b^{(k)}| \le c(1 + \ln(|b|/|a|)), \tag{1.5}$$

and for any *a* and any a(v), $0 \le v < k$,

 $|P_{a(v)}^{(v)}| \leq c$ and $|P_{a}^{(k)}| \leq c(1 + \max(\ln(1/|a|), 0)).$ (1.6)

The norm of $f \in \Lambda_k^*(F)$ is the infimum of the constants c appearing in (1.5) and (1.6).

Here $P_{a(v)}^{(v)}$ and $P_a^{(k)}$ denote derivatives of order v and k, respectively, so they are constant functions.

The next theorem is proved in Section 3.

THEOREM 2. Let $F \subset R$. Then

$$\Lambda_k^*(F) = \Lambda_k(F)$$

with equivalent norms. More precisely, there exist constants c_1 and c_2 , depending only on k, such that, if $f \in \Lambda_k(F)$ or $f \in \Lambda_k^*(F)$,

$$c_1 \| f \|_{A_k(F)} \leq \| f \|_{A_k^*(F)} \leq c_2 \| f \|_{A_k(F)}.$$
(1.7)

Thus, by Theorem 1, $\Lambda_k^*(F)$ is an alternative characterization of the trace of $\Lambda_k(\mathbb{R}^n)$ to F for the case n = 1. It has the advantage of being of a more constructive character, which leads to the following theorem (see the end of Section 3 for an explanation).

THEOREM 3. Let $F \subset R$ and let k be fixed. Then there exists a continuous, linear extension operator $E: \Lambda_k^*(F) \to \Lambda_k(R)$. The norm of the operator depends only on k.

Of course, the restriction operator from $\Lambda_k(R)$ to $\Lambda_k(F)$ is trivially continuous. The operator E in Theorem 3 is not the same for different values of k.

Next we give a characterization of $A_k(R)$ using interpolating polynomials, which is a little different than the one obtained by taking F = R in Definition 3. For k = 1, the proposition below was given in [1], but the proof given there cannot be generalized to cover the cases k > 1. As before, a denotes a set consisting of k + 1 points from R.

PROPOSITION 1. A function f belongs to $\Lambda_k(R)$ if and only if there exists a constant M such that $|f| \leq M$ and for every a

$$|f(x) - P_a(x)| \le M |a|^k, \quad x \in Q_a.$$
 (1.8)

The $\Lambda_k(R)$ -norm of f is equivalent to the infimum of the constants M.

The proof of this proposition is given in Remark 1 in the next section.

2. PRELIMINARIES

This section is a preparation for the proof of Theorem 2, which is given in the next section. From now on, c denotes a constant, not necessarily the same each time it appears. Neither do we from time to time specify how c depends on other constants; in most formulas in this section, however, c is in a natural way equal to the $\Lambda_k^*(F)$ -norm or the $\Lambda_k(F)$ -norm of a given function f, multiplied by a constant which depends on k and maybe some other constants, which in their turn, when the formulas are applied in Section 3, will be chosen only depending on k. Lemma 1 and the first two remarks contain results on the space $\Lambda_k^*(F)$.

In the lemma, we use the same notation as in Definition 3, but we do not assume that a and b have k points in common, and furthermore lQ_a denotes the interval with the same center as Q_a but with length l |a|.

LEMMA 1. Let
$$l \ge 1$$
, and let $f \in A_k^*(F)$. Then
 $|P_a(x) - P_b(x)| \le c(\max(|a|, |b|))^k, \quad x \in lQ_a \cap lQ_b.$ (2.1)

Proof. We may suppose that $|a| \le |b|$. Assume first that a and b have k points in common, say $\alpha_1, \alpha_2, ..., \alpha_k$. Consider the zero-polynomial as the polynomial of degree at most k-1 interpolating $P_a - P_b$ at these points. Then, by Lagrange's interpolation formula with remainder, for some τ ,

$$P_{a}(x) - P_{b}(x) - 0 = (P_{a}^{(k)}(\tau) - P_{b}^{(k)}(\tau)) \prod_{i=1}^{k} (x - \alpha_{i})/k!.$$

Using (1.5) this gives

$$|P_{a}(x) - P_{b}(x)| \leq c(1 + \ln(|b|/|a|)) \prod_{i=1}^{k} |x - \alpha_{i}|.$$
(2.2)

If now $x \in lQ_a$, then $|x - \alpha_i| \leq l |a|$, and using also that $1 + \ln(|b|/|a|) \leq |b|/|a|$, we obtain from (2.2) that $|P_a(x) - P_b(x)| \leq c |b| |a|^{k-1} \leq c |b|^k$, which is (2.1) in case *a* and *b* have *k* points in common.

We next prove the lemma assuming that $Q_a \subset Q_b$. We do this by exchanging the elements of *a* by elements of *b*, one at a time, and using in each step the already proved case. Let $d_0 = a$. Let d_1 be as *a*, but with the smallest element of *a* replaced by the smallest in *b*. Let d_2 be as d_1 but with the largest element of d_1 replaced by the largest in *b*. Next let d_3 be as d_2 , but with an element in d_2 which is not in *b* (if there is one) replaced by an element in *b* not in d_2 ; this last procedure is continued until we arrive at $d_v = b$. Here $v \leq k$. Then all Q_{d_v} contain Q_a , so from the special case of (2.1) shown above

$$|P_{d_i} - P_{d_{i-1}}| \leq c |b|^k$$
, $x \in lQ_{d_i} \cap lQ_{d_{i-1}} \supset lQ_a = lQ_a \cap lQ_b$.

Using $|P_a - P_b| \leq \sum_{i=1}^{v} |P_{d_i} - P_{d_{i-1}}|$, we get (2.1) in the case $Q_a \subset Q_b$. Finally, the general case follows upon writing $|P_a - P_b| \leq |P_a - P_e| + |P_a|$

 $|P_e - P_b|$, where e is a set consisting of k + 1 elements from $a \cup b$, among them the smallest and largest from $a \cup b$, so that $Q_a, Q_b \subset Q_e$.

Remark 1. If $f \in A_k^*(F)$, $x \in Q_a \cap F$, and P_x is a polynomial interpolating f at x and k points of a, then Lemma 1 shows that $|P_x(x) - P_a(x)| \leq c |a|^k$ so, since $P_x(x) = f(x)$,

$$|f(x) - P_a(x)| \le c |a|^k, \qquad x \in Q_a \cap F.$$
(2.3)

In particular this shows, as soon as Theorem 2 is proved, that the only-if part of Proposition 1 holds. The converse follows easily from the characterization of $\Lambda_k(R)$ in Definition 2.

Remark 2. We shall deduce some more facts concerning $\Lambda_k^*(F)$ using Newton's interpolation formula. It may be written

$$P(a_0, a_1, ..., a_m; f)(x) = \sum_{i=0}^m P^{(i)}(a_0, a_1, ..., a_i; f) \prod_{j=0}^{i-1} (x - a_j)/i!, \quad (2.4)$$

where $P(a_0, a_1, ..., a_i; f)$ is the polynomial interpolating f at the distinct points $a_0, a_1, ..., a_i$. Combining (2.4) with (1.6) we obtain that if $f \in A_k^*(F)$ and Q has length $\leq c_1$,

$$|P_a(x)| \le c(1 + \max(\ln(1/|a|), 0), \qquad x \in Q, \text{ if } Q_a \subset Q, \tag{2.5}$$

and

$$|P_{a(v)}(x)| \leq c, \qquad x \in Q, \, v < k, \, \text{if } Q_{a(v)} \subset Q. \tag{2.6}$$

From (2.4) we also obtain the following result of a technical nature, which we will use in the next section. If $Q_a \subset Q$, where Q has diameter 1 and center x_0 , and b is obtained from a by replacing the largest element γ of a by $\gamma + 1$, and P_b interpolates f at the points of b from a and to $f(\gamma)$ at $\gamma + 1$, then

$$|P_b^{(k)}| \leqslant c \tag{2.7}$$

if $f \in A_k^*(F)$. This follows if one applies (2.4) to P_b taking $x = a_m = \gamma + 1$ and using (1.6). We also obtain, again using (2.4), that $|P_b(x)| \le c$, $x \in Q$ if $Q_b \subset Q$ where Q is as in (2.5).

The remaining remarks concern the space $A_k(F)$.

Remark 3. In the definition of $\Lambda_k(F)$ (Definition 2) we may as well assume that Q and Q' are centered in F, that $Q' \subset Q$, and that all cubes involved have sides of length ≤ 1 . In order to see this, assume that (1.2)-(1.4) hold with these restrictions on Q and Q'. First of all, one may assume that they hold for any Q, which is seen by setting $P_Q = 0$ if Q has

sides of length >1 (note that, by (1.2)-(1.4), $|f(x)| \leq c$, $x \in F$, and $|P_{Q'}(x)| \leq c$, $x \in Q'$, $\delta' < 1$). If $Q \cap F \neq \emptyset$ but Q is not necessarily centered in F, let δ be the length of a side of Q. Take a cube R with center in F and sides, parallel to those of Q, of length 2δ ; then $Q \subset R$. Define P_Q on Q by $P_Q = P_R$, where P_R is the polynomial associated to R by our assumption. Then, of course, P_Q satisfies (1.2) and (1.4), and we shall prove (1.3). Let Q and Q' intersect F and let $\delta' < \delta$. Let R" be a cube with the same center as R containing both R and R', with sides of length not exceeding a fixed constant times δ . Then $|P_Q - P_{Q'}| = |P_R - P_{R'}| \leq |P_R - P_{R''}| + |P_{R''} - P_{R'}| \leq c\delta$ in $Q \cap Q'$.

Remark 4. Let $f \in \Lambda_k(F)$ where $F \subset R$, let Q, Q', P_Q , and $P_{Q'}$ be as in Definition 2 with $Q \cap Q' \neq \emptyset$, and assume that $\delta > \delta'$. Then

$$|P_{O}^{(k)} - P_{O'}^{(k)}| \le c(1 + \ln(\delta/\delta')).$$
(2.8)

It is readily seen that it is enough to prove (2.8) in case $Q' \subset Q$ and Q and Q' have an endpoint x_0 in common (insert $\pm P_{Q \cup Q'}^{(k)}$ in $P_Q^{(k)} - P_{Q'}^{(k)}$ if $Q' \neq Q$). Let m be the first integer such that $e^{m\delta'} \ge \delta$, then $e^{m-1}\delta' < \delta$ so $m-1+\ln \delta' < \ln \delta$ or $m < 1+\ln(\delta/\delta')$. Let Q_v , v=0, 1,..., m-1, be the intervals with one endpoint x_0 , containing Q', and of length $e^v\delta'$, and put $Q_m = Q$. Write $P_Q^{(k)} - P_{Q'}^{(k)} = \sum_{i=1}^m (P_{Q_i}^{(k)} - P_{Q_{i-1}}^{(k)})$. By (1.3) and Markov's inequality we have $|P_{Q_i}^{(k)} - P_{Q_{i-1}}^{(k)}| \le c$, so we obtain (2.8). From (2.8) we may also obtain that

$$|P_{O'}^{(k)}| \le c(1 + \ln(1/\delta')), \qquad \delta' < 1, \tag{2.9}$$

by taking as Q an interval with length 1 containing Q'. Then $|P_{Q'}^{(k)}| \leq c$ by (1.4) and Markov's inequality, and (2.9) follows upon writing $P_{Q'}^{(k)} = P_{Q'}^{(k)} - P_{Q'}^{(k)} + P_{Q'}^{(k)}$.

Remark 5. If F = R, the polynomials P_Q in Definition 2 may be chosen to satisfy not only (1.2), (1.3), and (1.4), but also (c_1 is a constant)

$$|f^{(j)} - P^{(j)}_{Q}| \le c\delta^{k - |j|}, \qquad j < k, \quad x \in Q,$$
(2.10)

$$|P_Q^{(k)} - P_{Q'}^{(k)}| \le c, \qquad \delta \le c_1 \delta', \quad Q' \subset Q, \qquad (2.11)$$

and

$$|P_{O}^{(j)}| \leq c,$$
 $|j| \leq k-1, \quad \delta = 1.$ (2.12)

An analogy of this holds if $F = R^n$, and actually, in a certain sense, if $F \subset R^n$. See [2].

3. PROOF OF THEOREM 2

In the proof, we shall not say anything explicitly about equivalence of norms. However, all calculations are such that we actually obtain not only that $\Lambda_k(F) = \Lambda_k^*(F)$, but also that (1.7) holds.

We shall first prove that if $f \in \Lambda_k(F)$, then $f \in \Lambda_k^*(F)$. It is enough to prove this if F = R, since if $f \in \Lambda_k(F)$, then by Theorem 1 there exists an extension Ef of f to R, lying in $\Lambda_k(R)$. If this implies that $Ef \in \Lambda_k^*(R)$, then by the definition of the Λ_k^* -spaces, the restriction of Ef to F, i.e., f, belongs to $\Lambda_k^*(F)$.

So, let us assume that $f \in A_k(R)$, and let $a = \{a_0, a_1, ..., a_k\}$ and $b = \{a_0, a_1, ..., a_{k-1}, b_k\}$, where $a_0, a_1, ..., a_k$, and b_k are points from R such that $|b| \ge |a|$. We start by proving (1.5), i.e.,

$$|P_a^{(k)} - P_b^{(k)}| \le c(1 + \ln(|b|/|a|)).$$
(3.1)

Recall that Q_a and Q_b are the smallest intervals containing *a* and *b*, respectively. Let P_{Q_a} and P_{Q_b} be polynomials associated to Q_a and Q_b , and to *f*, as in the definition of $\Lambda_k(F)$. We insert these in $P_a^{(k)} - P_b^{(k)}$ and obtain

$$|P_a^{(k)} - P_b^{(k)}| \le |P_a^{(k)} - P_{Q_a}^{(k)}| + |P_{Q_a}^{(k)} - P_{Q_b}^{(k)}| + |P_{Q_b}^{(k)} - P_b^{(k)}|.$$

By (2.8), $|P_{Q_a}^{(k)} - P_{Q_b}^{(k)}| \leq c(1 + \ln(|b|/|a|))$. To estimate $P_a^{(k)} - P_{Q_a}^{(k)}$ we use that, since $P_a - P_{Q_a}$ interpolates $f - P_{Q_a}$ in $a_0, a_1, ..., a_k$, we may write (for k > 1; for k = 1 use the pointwise representation)

$$P_{a}^{(k)} - P_{Q_{a}}^{(k)} = \frac{k!}{a_{k} - a_{0}} \int_{0}^{1} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{k-2}} \left\{ (f - P_{Q_{a}})^{(k-1)} \times \left(a_{1} + \sum_{i=1}^{k-1} (a_{i+1} - a_{i}) t_{i} \right) - (f - P_{Q_{a}})^{(k-1)} \times \left(a_{0} + \sum_{i=1}^{k-1} (a_{i} - a_{i-1}) t_{i} \right) \right\} dt_{1}, dt_{2}, \dots, dt_{k-1}.$$
 (3.2)

This is a well-known representation (see, e.g., [3]; (3.2) may be obtained by combining the formulas (1.4) and (1.6) in that paper). By Remark 5 in Section 2, we may assume that $|f^{(k-1)}(x) - P_{Q_a}^{(k-1)}(x)| \leq c |a|, x \in Q_a$, and assuming for the moment that $a_0 \leq a_1 \leq \cdots \leq a_k$, we obtain from (3.2) that $|P_Q^{(k)} - P_{Q_a}^{(k)}| \leq c$; hence we also have $|P_b^{(k)} - P_{Q_b}^{(k)}| \leq c$. Altogether, we have proved (3.1).

Next we shall see that (1.6) holds. Since $|f^{(k-1)}| \leq c$ it follows from (3.2) that $|P_a^{(k)}| \leq c$ if |a| > 1 (use (3.2) with $f - P_{Q_a}$ replaced by f and $P_a^{(k)} - P_{Q_a}^{(k)}$ replaced by $P_a^{(k)}$). If |a| < 1 we write $|P_a^{(k)}| \leq |P_a^{(k)} - P_{Q_a}^{(k)}| + |P_{Q_a}^{(k)}|$; then by what we proved above $|P_a^{(k)} - P_{Q_a}^{(k)}| \leq c$, and by (2.9) $|P_{Q_a}^{(k)}| \leq c(1 + c)$

 $\ln(1/|a|)$). Thus we have shown that $|P_a^{(k)}| \le c(1 + \max(0, \ln(1/|a|)))$. Of course $|P_{a(0)}^{(0)}(x)| = |f(x)| \le c$, and $|P_{a(v)}^{(v)}| \le c$ may be obtained immediately from formula (1.6) in [3] and the fact that $|f^{(j)}| \le c$, |j| < k.

In the proof of the converse part of Theorem 2, we assume that F contains at least k + 1 points. This is permitted since a function in $\Lambda_k^*(F)$ is bounded, by (1.6), and it is easy to see that a bounded function on a finite set F is in $\Lambda_k(F)$. We need the following construction, essentially given in [7]. Let $x_0 \in F$ be an isolated point of F. We associate to x_0 a set $Q(x_0) =$ $\{a_0, a_1, ..., a_k\}$ consisting of k + 1 distinct points from F in the following way.

Let $a_0 = x_0$. Let a_1 be the element of F closest to a_0 (if there are two, take the one to the right), let a_2 be the point of F closest to $\{a_0, a_1\}$ (again, if two, take the one to the right), let a_3 be the point of F closest to $\{a_0, a_1\}$, and so on. We continue this procedure until we arrive at a limit point of F, or until k + 1 points are chosen. If we arrive at a limit point a_i , then choose $a_{i+1}, ..., a_k$ from F according to some rule so that they are closer to a_i then any of the points $a_0, a_1, ..., a_{i-1}$.

Let $d(Q(x_0))$ denote the diameter of $Q(x_0)$. We need the following fact about this construction (cf. [3, Lemma 3.4] and [7, Lemma 8]).

LEMMA 2. Let x_0 be an isolated point of F, and let $y_0 \in F$. Suppose that $d(Q(x_0)) > k |x_0 - y_0|$. Then y_0 is isolated, and $Q(x_0) = Q(y_0)$.

Proof. Let v be the first integer such that the distance from a_{v+1} to $\{a_0, a_1, ..., a_v\} = S_v$ is greater than $|x_0 - y_0|$. The integer v exists since $d(Q(x_0)) > k |x_0 - y_0|$. Then $a_0, a_1, ..., a_v$ are isolated, and y_0 must be one of them. Furthermore, if we enumerate the points of S_v from left to right, the distance between two consecutive points is less than or equal to $|x_0 - y_0|$. But this means that when constructing $Q(y_0)$, the first v + 1 points will be those of S_v , which means that $Q(x_0) = Q(y_0)$.

Assume now that $f \in \Lambda_k^*(F)$. We shall prove that $f \in \Lambda_k(F)$ by defining, for each interval Q of length ≤ 1 centered in F (cf. Remark 3) a polynomial P_Q satisfying (1.2), (1.3), and (1.4) in Definition 2. Let Q have length δ and center $x_0 \in F$. When defining P_Q , we consider two different cases. Case 1: Qcontains at least k + 1 points from F. Case 2: Q contains at most k points from F.

In Case 1, we define P_Q in the following way. Let α be the point of $F \cap Q$ furthest away from x_0 (if there are two, take the one to the right). Put $a_0 = \alpha$. Let $a_1 \in F \cap Q$ be the point furthest away from a_0 , and let, for i = 2, 3,..., $k, a_i \in F \cap Q$ be furthest away from $\{a_0, a_1, ..., a_{i-1}\}$. If there are several possibilities, take the one furthest to the right; however, it is not important how $a_2, a_3, ..., a_k$ are chosen, as long as they are chosen according to some rule. Put $a = \{a_0, a_1, ..., a_k\}$. Next, let β be the point in F, but not in the

interior of Q, closest to Q_a , if there is such a point with distance ≤ 1 from a. If there are two, take the one to the right, and if there are none, put $\beta = \gamma + 1$, where γ is the largest element of $F \cap Q$. Let b be as a, but with a_0 or a_1 replaced by β , in such a way that $Q_a \subset Q_b$, and let P_a and P_b be the polynomials of degree $\leq k$ interpolating to f at a and b, respectively. If $\beta = \gamma + 1$, let instead P_b have the value $f(\gamma)$ at β . By (1.6) and (2.7) we have $|P_a^{(k)} - P_b^{(k)}| \leq c(1 + \ln(1/|a|)) + c \leq c(1 + \ln |b|/|a|)$. As a consequence, the formula (2.2) which we use below is valid also in this case, which will mean that we do not have to treat it separately. If a = b, put $\theta = 1$; otherwise let θ be given by

$$\theta \ln |a| + (1 - \theta) \ln |b| = \ln r, \qquad (3.3)$$

where r is the length of $Q \cap Q_b$.

We define P_Q in Case 1 by

$$P_o = \theta P_a + (1 - \theta) P_b. \tag{3.4}$$

For future reference, we note that by (3.3) we have, if $a \neq b$,

$$\theta = \ln(|b|/r)/\ln(|b|/|a|)$$
(3.5)

and

$$1 - \theta = \ln(r/|a|) / \ln(|b|/|a|).$$
(3.6)

Also, if $x \in Q$ then by (2.2) we have $|P_a - P_b| \le c\delta^k (1 + \ln(|b|/|a|))$, so

$$|P_a(x) - P_b(x)| \le c\delta^k, \qquad x \in Q, \quad |b| \le 2 |a|. \tag{3.7}$$

In Case 2, associate $Q(x_0)$ to x_0 as in Lemma 2. If $d(Q(x_0)) > k/2$, let $a_{\mu+1}$ be the first point in the construction of $Q(x_0)$ such that the distance from $a_{\mu+1}$ to $T(x_0) = \{a_0, a_1, ..., a_{\mu}\}$ is $> \frac{1}{2}$. Put $d = Q(x_0)$ and $d(\mu) = T(x_0)$, let P_d and $P_{d(\mu)}$ be polynomials of degree $\leq k$ and $\leq \mu$, respectively, interpolating to f at the points of d and $d(\mu)$, and define P_O by

$$P_{Q} = P_{d} \qquad \text{if} \quad d(Q(x_{0})) \leq k/2 \tag{3.8}$$

and

$$P_Q = P_{d(\mu)}$$
 otherwise. (3.9)

For future reference, we note that if $d(Q(x_0)) > k/2$ and $|x_0 - y_0| < \frac{1}{2}$, then $T(x_0) = T(y_0)$. This follows from the proof of Lemma 2, which shows that for some $v \le \mu$, the first v points chosen in the definition of $Q(x_0)$ form the same set as the first v chosen in the definition of $Q(y_0)$. We shall now show that (1.2)-(1.4) hold under the assumptions that both Q and Q' are centered in F, $Q' \subset Q$, and $\delta \leq 1$ (see Remark 3), and start with (1.3), i.e., $|P_Q - P_{Q'}| \leq c\delta^k$, $x \in Q \cap Q'$. Notationally, we put a prime on concepts related to Q'; the center of Q' is for example denoted by x'_0 . Three cases may occur: (i) Both P_Q and $P_{Q'}$ are defined by Case 1; (ii) P_Q is given by Case 1 but $P_{Q'}$ by Case 2, and $P_{Q'}$ is defined by means of (3.8); or (iii) both P_Q and $P_{Q'}$ are given by Case 2. We treat the cases (i), (ii), and (iii) separately.

In case (i) we have

$$P_{Q} - P_{Q'} = \theta P_{a} + (1 - \theta) P_{b} - \theta' P_{a'} - (1 - \theta') P_{b'}.$$

Assume first that the interior of Q', Int(Q'), contains $Q \cap F$. Then a = a'and b = b', so $P_Q - P_{Q'} = (\theta - \theta')(P_a - P_b)$. Using (2.2) for $x \in Q'$ (then $|x - a_i| \leq \delta'$) and (3.5) one obtains (use $\delta/2 \leq r \leq \delta$)

$$|(\theta - \theta')(P_a - P_b)| \leq c \ln(2\delta/\delta')/\ln(|b|/|a|) \,\delta'^k(1 + \ln(|b|/|a|))$$

Thus, if $|b| \ge 2 |a|$, since $\delta'^k \ln(\delta/\delta') \le \delta^k$, we have $|P_Q - P_{Q'}| \le c\delta^k$, $x \in Q'$. If $|b| \le 2 |a|$, this estimate follows directly from (3.7). In case (i), when $\operatorname{Int}(Q') \ne Q \cap F$, we instead write

$$P_Q - P_{Q'} = (1 - \theta)(P_b - P_a) + \theta'(P_{b'} - P_{a'}) + P_a - P_{b'}.$$

Since x'_0 , the center of Q', is in Q_a and $\operatorname{Int}(Q') \neq Q \cap F$, it is easily seen that $3Q_a \supset Q'$, so $|x-a_i| \leq 2 |a|$ if $x \in Q'$. With this in mind, one obtains for $x \in Q'$ from (2.2) and (3.6) that $(1-\theta) |P_b - P_a| \leq c \ln(\delta/|a|)/\ln(|b|/|a|) |a|^k (1 + \ln(|b|/|a|)) \leq c\delta^k$ if $|b| \geq 2 |a|$. If not, we use instead (3.7). Next, by (2.2) and (3.5) we obtain for $x \in Q'$, using the fact that $r' \geq \delta'/2$, $\theta' |P_{b'} - P_{a'}| \leq c \ln(2|b'|/\delta')/\ln(|b'|/|a'|)\delta'^k (1 + \ln(|b'|/|a'|)) \leq c\delta'^k \ln(|b'|/\delta')$ if $|b'| \geq 2 |a'|$ (if not, we again estimate by means of (3.7)). Since $\operatorname{Int}(Q') \neq Q \cap F$, we have $|b'| \leq \delta$, and hence $\theta' |P_{b'} - P_{a'}| \leq c\delta^k$. Finally, since it is easily seen that $3Q_a \cap 3Q_{b'}$ contains Q' if $\operatorname{Int}(Q') \neq Q \cap F$, Lemma 1 gives $|P_a - P_{b'}| \leq c\delta^k$, $x \in Q'$. This completes the proof of (1.3) in case (i).

In case (ii), $P_Q - P_{Q'} = \theta P_a + (1 - \theta) P_b - P_{d'} = (1 - \theta)(P_b - P_a) + P_a - P_{d'}$. Since now $Q' \neq Q \cap F$, the calculations above give $(1 - \theta) |P_b - P_a| \leq c\delta^k$, $x \in Q'$. It is easily seen that, by construction, $|d'| \leq (k/2) \delta$, so by Lemma 1, $|P_a - P_{d'}| \leq c\delta^k$, $x \in 3Q_a \cap 3Q_{d'} \supset Q'$. Note that $3Q_{d'} \supset Q'$ follows from the fact that $Q_{d'}$ contains points outside Q' for if not Q' would contain k + 1 points.

Finally we consider case (iii). If $d(Q(x_0)) > (k/2) \delta$, then, since $|x_0 - x'_0| \le \delta/2$, it follows from Lemma 2 that $Q(x_0) = Q(x'_0)$. If furthermore $d(Q(x_0)) > k/2$, then, by the comments after (3.9), $T(x_0) = T(x'_0)$. Thus, by

the definition of P_Q and $P_{Q'}$ in Case 2, $P_Q = P_{Q'}$. On the other hand, if $d(Q(x_0)) \leq (k/2) \delta$, then also $d(Q(x'_0)) \leq (k/2) \delta$, both P_Q and $P_{Q'}$ are defined using (3.8), and Lemma 1 gives $|P_Q - P_{Q'}| = |P_d - P_{d'}| \leq c\delta^k$, $x \in Q' \subset 3Q_d \cap 3Q_{d'}$. With this, (1.3) is proved also in case (iii).

The proof of (1.2) is now obtained from (1.3) as follows. If x is a cluster point of $Q \cap F$, let Q' be a subinterval of Q with center in F and one endpoint x, containing at least k + 1 points from F. Then $f(x) = P_{Q'}(x)$, so, by (1.3), $|f(x) - P_Q(x)| = |P_{Q'}(x) - P_Q(x)| \le c\delta^k$. On the other hand, if x is an isolated point of $Q \cap F$, consider, if $x \ne x_0$ ($x = x_0$ yields $f(x) = P_Q(x)$), an interval $Q'' \subset 2Q$ centered at x containing only x from $Q \cap F$. Then $f(x) = P_{Q'}(x)$, and since $Q'' \subset 2Q$ we get

$$|f(x) - P_{Q}(x)| \leq |P_{Q''}(x) - P_{2Q}(x)| + |P_{2Q}(x) - P_{Q}(x)| \leq c\delta^{k}$$

if 2Q has length ≤ 1 ; otherwise (1.2) follows easily from (1.6), (1.3), and (1.4), which is proved below.

Finally we prove (1.4). If P_Q is defined by Case 1, then $|P_Q| \leq \theta |P_a| + (1-\theta) |P_b|$. Here, $|P_b| \leq c$ and $|P_a| \leq c$ if $|a| \geq \frac{1}{4}$ (see (2.5) and the discussion in the end of Remark 2). If $|a| \leq \frac{1}{4}$ we get by (3.5) and (2.5) that

$$\theta |P_a| \le c \ln |b|/\ln(|b|/|a|)(1 + \ln(|b|/|a|)) \le c.$$

On the other hand, if P_Q is defined by Case 2, then $P_Q = P_d$ where $1/2 \le |d| \le k/2$ so $|P| \le c$ by (2.5), or $P_Q = P_{d(\mu)}$ where $d(\mu)$ has length $\le k/2$, so $|P_Q| \le c$ because of (2.6). This completes the proof of Theorem 2.

Now, we also obtain Theorem 3. By Theorem 1 and the comments after it, every $f \in \Lambda_k(F)$ has an extension Ef in $\Lambda_k(\mathbb{R}^n)$ with $||Ef||_{\Lambda_k(\mathbb{R}^n)} \leq c ||f||_{\Lambda_k(F)}$. The extension Ef is constructed, e.g., with aid of the approximating polynomials $\{P_Q\}$ in Definition 2 (see [1, 2, 5]: however, the construction given there is not explicitly in terms of $\{P_Q\}$; combine, for k = 1, e.g., the extension given on p. 168 in [1] with Remark 4.5 in that paper). If $\{P_Q\}$ is associated to f and $\{\tilde{P}_Q\}$ to \tilde{f} , and Ef and $E\tilde{f}$ are obtained by means of these approximations, then $Ef + E\tilde{f}$ is equal to $E(f+\tilde{f})$, if $E(f+\tilde{f})$ is obtained by means of the approximation $\{P_Q + \tilde{P}_Q\}$ to $f + \tilde{f}$. Now, if $F \subset R$ and $f \in \Lambda_k(F) = \Lambda_k^*(F)$, associate P_Q to fas in the proof of the statement $(f \in \Lambda_k^*(F) \Rightarrow f \in \Lambda_k(F))$ above. Then, by construction, $\{P_Q\}$ is approximation, one obtains Theorem 3.

References

1. A. JONSSON AND H. WALLIN, The trace to closed sets of functions with second difference of order O(h), J. Approx. Theory 26 (1979), 159-184.

- A. JONSSON AND H. WALLIN, "Local Polynomial Approximation and Lipschitz Type Conditions on General Closed Sets," Departments of Mathematics, University of Umeå, No. 1, 1980.
- 3. J. MERRIEN, Prolongateurs de fonctions différentiables d'une variable réelle, J. Math. Pures Appl. 45 (1966), 291-309.
- 4. E. M. STEIN, "Singular Integrals and Differentiability Properties of Functions," Princeton Univ. Press, Princeton, 1970.
- 5. H. WALLIN, The trace to closed sets of the Zygmund class of quasi-smooth functions in \mathbb{R}^n , in "Multivariate Approximation," (D. C. Handscomb, Ed.), pp. 83–93, Academic Press, London, 1978.
- 6. H. WHITNEY, Analytic extensions of differentiable functions defined on closed sets, *Trans. Amer. Math. Soc.* **36** (1934), 63–89.
- 7. H. WHITNEY, Differentiable functions defined in closed sets, *Trans. Amer. Math. Soc.* 36 (1934), 369-387.