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O. INTRODUCTION

Let Ak(Rn
) denote the Zygmund class of continuous functions satisfying

ILlZ+ 1f(x)l::(c Ihl k and If(x)1 ::(c, x, hERn
, where LlZ+ 1f(x) is the dif

ference of order k + 1 with step h at x (Definition 1 below). In [1], with
further development in [2] (see also [5]), the author together with
H. Wallin characterized the trace {j I F; f E Ak(Rn

)} of Ak(Rn
) to an

arbitrary closed set FeRn by means of certain approximation properties
(Theorem 1 below). The characterizations given in those papers, however,
are non-constructive. One consequence of this is that the extension theorem
which is the main part of Theorem 1 is not obtained by means of a linear
extension operator.

In this paper we give a characterization of the trace of Ak(R) to an
arbitrary closed subset F of R, which is of a more constructive character,
using interpolating polynomials (Definition 3 and Theorem 2); observe that
we now work in one dimension. As a consequence, we obtain a bounded,
linear extension operator from the trace space to Ak(R) (Theorem 3). In
Proposition 1, we give a characterization of AdR) by means of inter
polating polynomials, which we have previously seen for k = 1 only.

The problem studied in this paper is similar to one studied by H. Whit
ney in [7], where a characterization of the trace of Cm(R), the class of m
times continuously differentiable functions, to closed subsets of R was given
with the aid of interpolating polynomials. Whitney's result has been
generalized by J. Merrien in [3]. One could say that the present paper is
related to [1] in the same way as Whitney's paper [7] is related to his
paper [6], where he proves his classical extension theorem. To characterize
the trace of the Lipschitz spaces AAR), r:t. non-integer (cf. [4], Chap. VI), is
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a problem which is very close to the one studied in [3] and [7] and hence
we consider the integer case only.

It is an open problem to obtain results similar to those in this paper, and
to those in [7], in several dimensions.

1. DEFINITIONS AND RESULTS

We first give one of many possible definitions of the classical Zygmund
(or Lipschitz) space AARn

). It is important to note that we deal with the
spaces which are defined by means of a difference of order k + 1 and not of
order k, which leads to a different space (see, e.g., [4, p. 141]). By ,17: f(x),
x, hE R n

, m positive integer, we denote the difference of order m with step h
at the point x, i.e., ,1hf(x)=f(x+h)-f(x) and, for m>l, ,17:f(x)=
,1 H,17: - If)(x).

DEFINITION 1 (the spaces Ak(Rn
)). Let f be defined on R n

• Then
f EAk(Rn

), k positive integer, if and only iff is continuous and for x, hE R n

and for some constant M satisfies

and If(x)1 ~M. (1.1 )

The norm off in Ak(Rn
) is defined as the infimum of the constants Min

(1.1). Alternatively, Ak(Rn
) may be defined as the space consisting of all

functions f which have continuous and bounded derivatives up to order
k -1, and with derivativesfU ) of order k -1 satisfying I,1UU )(x)1 ~ M Ihl.
Often spaces A",(Rn) are defined for IX> 0, but since our interest lies in the
integer case (cf. the introduction) we restrict ourselves to Ak(Rn

). Also,
Definition 2 and Theorem 1 were in [2] given for spaces A",(F), IX> 0, and
also in a more general form from other aspects.

From now on, F will always denote a closed subset of Rn
.

The spaces Ak(F) in the next definition were given in [2, Theorem 1.3],
see also [1, Remark 4.5]. In [2] we used a different notation. If F= R n

, the
space Ak(F) given by Definition 2 coincides with the space AARn

) in
Definition 1, cf. [2, Proposition 1.3].

DEFINITION 2 (the space Ak(F)). Letfbe defined on F. ThenfEAk(F),
k positive integer, if and only if the following condition holds: for every
closed cube Q in R n with Qn F =f. 0 and with sides of length b > 0, there
exists a polynomial PQ of degree ~ k such that

XE QnF; (1.2 )



THE TRACE OF THE ZYGMUND CLASS

if Q' is a cube with sides of length ()' > 0, Q' n Fi: 0, then

3

XEQnQ', (1.3)

and

X E Q, if () = 1. (1.4 )

The norm of fEAk(F) is the infimum of the constants c, such that
(1.2 )-( 1.4) hold for some collection {PQ }.

The interest in the spaces AAF) comes from the following theorem,
which says that Ak(F) is the "trace" of the classical space Ak(Rn) to F. By
f I F we denote the pointwise restriction to F of a continuous function f
defined on Rn

.

THEOREM 1. AAF) = {f I F;f E Ak(Rn)}.

Theorem 1 is essentially an extension theorem, since iff E Ak(Rn), then it
is obvious from Definition 2 that f I FE Ak(F). The interesting part of
Theorem 1 is the fact that if g E Ak(F), then there exists an extension f
defined on R n of g with f E AARn); it is also known that the Ak(Rn)-norm
of f is less than a constant times the AAF)-norm of g, where the constant
only depends on k and n. Theorem 1 was given in [2] (see Corollary 1.1 of
that paper). However, that corollary is in its turn more or less a refor
mulation of the extension theorem in [1].

We now come to the results of this paper, and work from now on in one
dimension. In the following definition k is a positive integer, a denotes a set
consisting of k + 1 distinct points from F, a = {ao, a b ... , ad, lal is the
diameter of the set a, Qa is the smallest closed interval containing a, and Pa
is the unique polynomial of degree ~ k interpolating f at ao, a I,... , ak' The
letter b is used analogously. Also, if°~ v< k, a(v) is a set of v + 1 distinct
points from F, Pa(v) is the polynomial of degree ~ v interpolating f at the
points of a(v), and Qa(v) is the smallest interval containing a(v).

DEFINITION 3 (the space At(F)). Let FeR and let f be defined on F.
Thenf E At(F) if and only if to any a and b with k points in common and
Ibl ~ lal

and for any a and any a(v), °~ v < k,

(1.5)

and IPn ~c(l +max(ln(l/lal),O). (1.6)

The norm off E At(F) is the infimum of the constants c appearing in (1.5)
and (1.6).
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Here Pi(~) and Pik ) denote derivatives of order v and k, respectively, so
they are constant functions.

The next theorem is proved in Section 3.

THEOREM 2. Let Fe R. Then

with equivalent norms. More precisely, there exist constants C1 and c2 ,

depending only on k, such that, iff E Ak(F) or f E At(F),

(1.7)

Thus, by Theorem 1, At(F) is an alternative characterization of the trace
of Ak(Rn

) to F for the case n = 1. It has the advantage of being of a more
constructive character, which leads to the following theorem (see the end of
Section 3 for an explanation).

THEOREM 3. Let FeR and let k be fixed. Then there exists a continuous,
linear extension operator E: At(F) -+ Ak(R). The norm of the operator
depends only on k.

Of course, the restriction operator from Ak(R) to Ak(F) is trivially COn
tinuous. The operator E in Theorem 3 is not the same for different values
of k.

Next we give a characterization of Ak(R) using interpolating
polynomials, which is a little different than the one obtained by taking
F= R in Definition 3. For k = 1, the proposition below was given in [1],
but the proof given there cannot be generalized to cover the cases k > 1. As
before, a denotes a set consisting of k + 1 points from R.

PROPOSITION 1. A function f belongs to Ak(R) if and only if there exists
a constant M such that I f I ~ M and for every a

If(x)-PAx)1 ~M lal\ (1.8 )

The Ak(R)-norm off is equivalent to the infimum of the constants M.

The proof of this proposition is given in Remark 1 in the next section.

2. PRELIMINARIES

This section is a preparation for the proof of Theorem 2, which is given
in the next section. From now on, c denotes a constant, not necessarily the
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same each time it appears. Neither do we from time to time specify how c
depends on other constants; in most formulas in this section, however, c is
in a natural way equal to the At(F)-norm or the Ak(F)-norm of a given
function f, multiplied by a constant which depends on k and maybe some
other constants, which in their turn, when the formulas are applied in Sec
tion 3, will be chosen only depending on k. Lemma 1 and the first two
remarks contain results on the space At(F).

In the lemma, we use the same notation as in Definition 3, but we do not
assume that a and b have k points in common, and furthermore IQa
denotes the interval with the same center as Qa but with length Iiai.

LEMMA 1. Let I~ 1, and let f E At(F). Then

(2.1 )

Proof We may suppose that lal ::::; Ihi. Assume first that a and b have k
points in common, say aI' a2"'" ak' Consider the zero-polynomial as the
polynomial of degree at most k - 1 interpolating P a - Pb at these points.
Then, by Lagrange's interpolation formula with remainder, for some r,

k

Pa(X)-Pb(X)-O=(p~k)(r)-Phk)(r)) TI (x-aJlkL
i~l

Using (1.5) this gives
k

IPa(x)-Ph(x)1 ::::;c(1 +In(lblllal)) TI lx-a;!. (2.2)
i~1

If now x E IQa, then Ix - ail::::; Ilal, and using also that 1+In( [bi/lal)::::;
Ibi/lal, we obtain from (2.2) that IPa(x) - Pb(x)1 ::::; c Ibllal k

-
1

::::; c Ibl k,
which is (2.1) in case a and b have k points in common.

We next prove the lemma assuming that Qa c Qb' We do this by
exchanging the elements of a by elements of b, one at a time, and using in
each step the already proved case. Let do = a. Let d1 be as a, but with the
smallest element of a replaced by the smallest in b. Let d2 be as d1 but with
the largest element of d 1 replaced by the largest in b. Next let d3 be as d2 ,

but with an element in d2 which is not in b (if there is one) replaced by an
element in b not in d2 ; this last procedure is continued until we arrive at
d v = b. Here v::::; k. Then all Qd, contain Qa, so from the special case of (2.1)
shown above

Using IPa-Pbl::::;L~=lIPdi-Pdi-ll, we get (2.1) in the case QacQb'
Finally, the general case follows upon writing IPa-Pbl::::;IPa-Pel+
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IPe-Pbl, where e is a set consisting of k+ 1 elements from aub, among
them the smallest and largest from au b, so that Qa, Qb C Qe'

Remark 1. If f E At(F), x E Qa n F, and P x is a polynomial inter
polating f at x and k points of a, then Lemma 1 shows that
WAx) - PAx)1 ~ c lal k so, since PAx) = f(x),

(2.3 )

In particular this shows, as soon as Theorem 2 is proved, that the only-if
part of Proposition 1 holds. The converse follows easily from the charac
terization of Ak(R) in Definition 2.

Remark 2. We shall deduce some more facts concerning At(F) using
Newton's interpolation formula. It may be written

m i-I

P(aQ, a l , ... , am;f)(x) = I pU)(aQ,al, ...,ai;f) Il (x-aJ/i!, (2.4)
i~Q j~Q

where P(aQ, al ,..., ai;f) is the polynomial interpolating f at the distinct
points aQ' a l , ... , ai • Combining (2.4) with (1.6) we obtain that iffEAt(F)
and Q has length ~ c 1 ,

and

IPa(x)1 ~c(l +max(ln(I/lal), 0), (2.5)

X E Q, v < k, if Qa(v) c Q. (2.6)

From (2.4) we also obtain the following result of a technical nature, which
we will use in the next section. If Qa c Q, where Q has diameter 1 and cen
ter x Q , and b is obtained from a by replacing the largest element y of a by
y+ 1, and Pb interpolates fat the points of b from a and tof(y) at y+ 1,
then

(2.7)

if f E At(F). This follows if one applies (2.4) to Pb taking x = am = y + 1
and using (1.6). We also obtain, again using (2.4), that IPb(x)1 ~ c, x E Q if
Qb c Q where Q is as in (2.5).

The remaining remarks concern the space Ak(F).

Remark 3. In the definition of Ak(F) (Definition 2) we may as well
assume that Q and Q' are centered in F, that Q' c Q, and that all cubes
involved have sides of length ~ 1. In order to see this, assume that
(1.2)-(1.4) hold with these restrictions on Q and Q'. First of all, one may
assume that they hold for any Q, which is seen by setting PQ = 0 if Q has
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sides of length >1 (note that, by (1.2)-(1.4), If(x)1 ~c, xEF, and
IPQ,(x)1 ~ c, x E Q', (j' < 1). If Q n F =1= 0 but Q is not necessarily centered
in F, let (j be the length of a side of Q. Take a cube R with center in F and
sides, parallel to those of Q, of length 2(j; then Q e R. Define PQ on Q by
PQ= PR' where PR is the polynomial associated to R by our assumption.
Then, of course, PQ satisfies (1.2) and (1.4), and we shall prove (1.3). Let Q
and Q' intersect F and let (j' < (j. Let R" be a cube with the same center as
R containing both Rand R', with sides of length not exceeding a fixed con
stant times (j. Then IPQ-PQ,I = IPR-PR,I ~ IPR-PR"I + IPR,,-PR,I ~c(j

in QnQ'.

Remark 4. Let f E Ak(F) where Fe R, let Q, Q', PQ' and PQ' be as in
Definition 2 with Qn Q' =1= 0, and assume that (j > (j'. Then

IP~) - P~)I ~ c( 1+In((j/(j')). (2.8)

It is readily seen that it is enough to prove (2.8) in case Q' e Q and Q and
Q' have an endpoint Xo in common (insert ±P~~ Q' in P~) - P~) if
Q' rt Q). Let m be the first integer such that e

mb
' ~ (j, then em -l(j' < (j so

m - 1+ In (j' < In (j or m < 1+ In((j/(j'). Let Qv, v = 0, 1,..., m -1, be the
intervals with one endpoint xo, containing Q', and of length eW, and put
Q =Q. Write p(k)_p(k)=",m (P(k)_P(k)). By (1.3) and Markov'sm Q Q L..,~I Q, Q,_I

inequality we have IP~/ - P~/_II ~ c, so we obtain (2.8). From (2.8) we may
also obtain that

(j' < 1, (2.9)

by taking as Q an interval with length 1 containing Q'. Then IP~)I ~ c by
(1.4) and Markov's inequality, and (2.9) follows upon writing P~) = P~)

P~)+P~).

Remark 5. If F = R, the polynomials PQ in Definition 2 may be chosen
to satisfy not only (1.2), (1.3), and (1.4), but also (c 1 is a constant)

IPj)_P~)1 ~C(jk-Ijl, j<k, XEQ, (2.10)

IP~)-P~)I ~c, (j ~ CI (j', Q'eQ, (2.11 )

and

IP~)I ~c, Ijl ~k-l, (j = 1. (2.12)

An analogy of this holds if F= R n
, and actually, in a certain sense, if

Fe Rn
. See [2].
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3. PROOF OF THEOREM 2

In the proof, we shall not say anything explicitly about equivalence of
norms. However, all calculations are such that we actually obtain not only
that Ak(F) = At(F), but also that (1.7) holds.

We shall first prove that if f E Ak(F), then f E At(F). It is enough to
prove this if F = R, since if f E Ak(F), then by Theorem 1 there exists an
extension Ef of f to R, lying in AdR). If this implies that Ef E At(R), then
by the definition of the At-spaces, the restriction of Ef to F, i.e., f, belongs
to At(F).

So, let us assume that f E AdR), and let a = {ao, al ,..., ad and b =
{ao, at ,..., ak_l, bd, where ao, a»... , ak, and bk are points from R such that
Ibl ~ 14 We start by proving (1.5), i.e.,

(3.1 )

Recall that Qa and Qb are the smallest intervals containing a and b, respec
tively. Let PQa and PQb be polynomials associated to Qa and Qb, and to f,
as in the definition of Ak(F). We insert these in Pikl - P~k) and obtain

IP(kl_P(kll ~ IP(kl_P(k)1 + IP(k)_P(k)1 + IP(kl_P(k)1
a b '" a Qa Qa Qb Qb b'

By (2.8), IP~;-P~;I:::;c(I+ln(lbl/lal)). To estimate Pik)-P~; we use
that, since Pa - PQa interpolates f - PQa in ao, a»..., ak> we may write (for
k> 1; for k = 1 use the pointwise representation)

x(a t + :tl1(ai+l-aJli)-U-PQYk-ll

x(ao+ :tl1(ai-a,_dl;)}dlt,dlz, ...,dlk_t. (3.2)

This is a well-known representation (see, e.g., [3J; (3.2) may be obtained
by combining the formulas (1.4) and (1.6) in that paper). By Remark 5 in
Section 2, we may assume that IPk-ll(x)-P~a-t)(x)l:::;clal, XEQa, and
assuming for the moment that ao:::; at:::; ... :::; ak> we obtain from (3.2) that
IP~) - P~}1 :::; c; hence we also have Ip~kl - P~;I :::; c. Altogether, we have
proved (3.1).

Next we shall see that (1.6) holds. Since If(k - t)1 :::; C it follows from (3.2)
that IPik11 :::; c if lal > 1 (use (3':2) withf - PQa replaced by f and Pikl - P~!

replaced by Pikl ). If lal < 1 we write IPikll:::; lPik)- P~!I + IP~;I; then by
what we proved above Ip~kl - P~!I :::; c, and by (2.9) IP~}I:::; c( 1 +
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In(l/Ial »). Thus we have shown that IP~k)1 ~ c(l + max(O, In(l/Ial »)). Of
course IP~n/x)1 = If(x)1 ~c, and IP~(~)I ~c may be obtained immediately
from formula (1.6) in [3] and the fact that IfU)1 ~c, Ijl <k.

In the proof of the converse part of Theorem 2, we assume that F con
tains at least k + 1 points. This is permitted since a function in At(F) is
bounded, by (1.6), and it is easy to see that a bounded function on a finite
set F is in Ak(F). We need the following construction, essentially given in
[7]. Let Xo E F be an isolated point of F. We associate to Xo a set Q(xo) =
{ao, aI, ... , ak} consisting of k + 1 distinct points from F in the following
way.

Let ao = Xo' Let a l be the element of F closest to ao (if there are two,
take the one to the right), let az be the point of F closest to {ao, aI} (again,
if two, take the one to the right), let a3 be the point of F closest to
{ao, ai' az}, and so on. We continue this procedure until we arrive at a
limit point of F, or until k + 1 points are chosen. If we arrive at a limit
point a;, then choose a;+ I , ... , ak from F according to some rule so that they
are closer to a; then any of the points ao, at ,..., ai-I'

Let d(Q(xo)) denote the diameter of Q(xo). We need the following fact
about this construction (cf. [3, Lemma 3.4] and [7, Lemma 8]).

LEMMA 2. Let Xo be an isolated point of F, and let Yo E F. Suppose that
d(Q(xo)) > k Ixo- Yol. Then Yo is isolated, and Q(xo) = Q(yo).

Proof Let v be the first integer such that the distance from a v + I to
{ao, al ,..., av} = Sv is greater than Ixo - Yol. The integer v exists since
d( Q(xo)) > k Ixo- Yol. Then ao, aI, ... , av are isolated, and Yo must be one of
them. Furthermore, if we enumerate the points of Sv from left to right, the
distance between two consecutive points is less than or equal to Ixo - Yol.
But this means that when constructing Q(yo), the first v+ 1 points will be
those of Sv, which means that Q(xo) = Q(yo).

Assume now that f E At(F). We shall prove that f E Ak(F) by defining,
for each interval Q of length ~ 1 centered in F (cf. Remark 3) a polynomial
PQ satisfying (1.2), (1.3), and (1.4) in Definition 2. Let Q have length <5 and
center X o E F. When defining PQ' we consider two different cases. Case 1: Q
contains at least k + 1 points from F. Case 2: Q contains at most k points
from F.

In Case 1, we define PQ in the following way. Let IX be the point of F n Q
furthest away from Xo (if there are two, take the one to the right). Put
ao= IX. Let a l E F n Q be the point furthest away from ao, and let, for i = 2,
3, ... , k, a;EFn Q be furthest away from {ao, a l , ... , a;_I}' If there are several
possibilities, take the one furthest to the right; however, it is not important
how az, a3"'" ak are chosen, as long as they are chosen according to some
rule. Put a = {ao, a l ,..., ad. Next, let f3 be the point in F, but not in the
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interior of Q, closest to Qa, if there is such a point with distance ~ 1 from
a. If there are two, take the one to the right, and if there are none, put
f3 = Y + 1, where y is the largest element of F n Q. Let b be as a, but with ao
or al replaced by f3, in such a way that QacQb' and let Pa and Pb be the
polynomials of degree ~ k interpolating to f at a and b, respectively. If
f3 = Y+ 1, let instead Pb have the value f( y) at f3. By (1.6) and (2.7) we have
IP~k) _ P~k)1 ~ c(l + In(1/lal)) + c~ c(l + In Ibl/lal). As a consequence, the
formula (2.2) which we use below is valid also in this case, which will mean
that we do not have to treat it separately. If a = b, put () = I; otherwise let ()
be given by

() In lal + (1- ()) In Ibl = In r,

where r is the length of Q n Qb.
We define PQ in Case 1 by

For future reference, we note that by (3.3) we have, if a # b,

() = In( Ibl/r )/In( Ibl/lal)

and

1- () = In(r/lal )/In( Ibl/lal).

(3.3 )

(3.4 )

(3.5)

(3.6)

Also, if XEQ then by (2.2) we have IPa-Pbl ~cJk(1 +In(lbl/lal)), so

XEQ, Ibl~2Ial. (3.7)

In Case 2, associate Q(xo) to Xo as in Lemma 2. If d(Q(xo)) > k/2, let
a/l+ 1 be the first point in the construction of Q(xo) such that the distance
from a/l+ 1 to T(xo) = {ao, a 1 , ••• , a/l} is >!. Put d = Q(xo) and d(J1.) = T(xo),
let Pd and Pd(/l) be polynomials of degree ~k and ~J1., respectively, inter
polating to f at the points of d and d(J1.), and define PQ by

and

PQ=Pd(/l)

if d( Q(xo)) ~ k/2

otherwise.

(3.8)

(3.9)

For future reference, we note that if d(Q(xo)) > k/2 and Ixo - Yol <!,
then T(xo)= T(yo). This follows from the proof of Lemma 2, which shows
that for some v~ fl., the first v points chosen in the definition of Q(xo) form
the same set as the" first v chosen in the definition of Q(yo).



THE TRACE OF THE ZYGMUND CLASS 11

We shall now show that (1.2 )-( 1.4) hold under the assumptions that
both Q and Q' are centered in F, Q' c Q, and (j ~ 1 (see Remark 3), and
start with (1.3), i.e., IPQ-PQ,I ~c(j\ xeQnQ'. Notationally, we put a
prime on concepts related to Q'; the center of Q' is for example denoted by
x~. Three cases may occur: (i) Both PQ and PQ' are defined by Case 1; (ii)
PQ is given by Case 1 but PQ' by Case 2, and PQ' is defined by means of
(3.8); or (iii) both PQ and PQ' are given by Case 2. We treat the cases (i),
(ii), and (iii) separately.

In case (i) we have

Assume first that the interior of Q', Int(Q'), contains Qn F. Then a = a'
and b=b', so PQ-PQ,=(()-()')(Pa-Pb). Using (2.2) for XEQ' (then
lx-ail ~(j') and (3.5) one obtains (use (j/2~r~(j)

I(() - ()')(Pa - Pb)1 ~ cln(2(j/(j')/ln( Ibl/lal) (j'k(1 + In( Ibl/lal))·

Thus, if Ibl ~2Ial, since (j'kln(j/(j')~(jk, we have IPQ-PQ,I ~C(jk, XEQ'.
If Ibl ~ 2 lal, this estimate follows directly from (3.7). In case (i), when
Int(Q') i> Q n F, we instead write

PQ- PQ' = (1 - ())(Pb- Pa) + ()'(Pb' - Pa') + Pa- Pb"

Since x~, the center of Q', is in Qa and Int(Q') i> QnF, it is easily seen
that 3Qa:;:} Q', so Ix - ail ~ 21al if x EQ'. With this in mind, one obtains for
XEQ' from (2.2) and (3.6) that (1-()) IPb-Pal ~cln(j/lal)/ln(lbl/lal)

lal k (1 +In(lbl/lal))~c(jk if Ibl ~2Ial. If not, we use instead (3.7). Next,
by (2.2) and (3.5) we obtain for x EQ', using the fact that
r' ~ (j'/2, ()' IPb' - Pa,1 ~ cln(2Ib'I/(j')/ln( Ib'l/la'l )fJ'k( 1 + In( Ib'I/la'I)) ~ C(j,k
In(lb'I/(j') if WI ~ 21a'i (if not, we again estimate by means of (3.7)). Since
Int(Q') i> QnF, we have WI ~(j, and hence ()' IPb,-Pa,1 ~C(jk. Finally,
since it is easily seen that 3Qa n 3Qb' contains Q' if Int(Q') i> Q n F,
Lemma 1 gives lPa-Pb,1 ~c(j\ XEQ'. This completes the proof of (1.3) in
case (i).

In case (ii), PQ-PQ,=()Pa+(I-())Pb-Pd,=(I-())(Pb-Pa)+
Pa-Pd,. Since now Q' i> QnF, the calculations above give (1-())
IPh-Pal ~c(j\ XEQ'. It is easily seen that, by construction, Id'i ~(k/2)(j,

so by Lemma 1, IPa-Pd,1 ~c(j\ xE3Qan3Qd,:;:}Q'. Note that 3Qd,:;:}Q'
follows from the fact that Qd' contains points outside Q' for if not Q' would
contain k + 1 points.

Finally we consider case (iii). If d(Q(xo)) > (k/2) 15, then, since
Ixo - x~1 ~ 15/2, it follows from Lemma 2 that Q(xo) = Q(x~). If furthermore
d(Q(xo)) > k/2, then, by the comments after (3.9), T(xo) = T(x~). Thus, by
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the definition of PQ and PQ' in Case 2, PQ= PQ" On the other hand, if
d(Q(xo)) ~ (kI2) «5, then also d(Q(x~)) ~ (kI2) «5, both PQ and PQ' are
defined using (3.8), and Lemma 1 gives IPQ-PQ,I = IPd-Pd,1 ~cbk,

xEQ'e3Qdn3Qd" With this, (1.3) is proved also in case (iii).
The proof of (1.2) is now obtained from (1.3) as follows. If x is a cluster

point of Q n F, let Q' be a subinterval of Q with center in F and one
endpoint x, containing at least k + 1 points from F. Then f(x) = PQ'(x), so,
by (1.3), If(x) - PQ(x)1 = IPQ'(x) - PQ(x)1 ~ cbk. On the other hand, if x is
an isolated point of QnF, consider, if x#xo (x=xo yieldsf(x)= PQ(x)),
an interval Q" e 2Q centered at x containing only x from Q n F. Then
f(x)=PQ,,(x), and since Q"e2Q we get

If(x)-PQ(x)1 ~ IPQ,,(x)-P2Q(x)1 + IP2Q(x)-PQ(x)1 ~Cbk

if 2Q has length ~ 1; otherwise (1.2) follows easily from (1.6), (1.3), and
(1.4), which is proved below.

Finally we prove (1.4). If PQ is defined by Case 1, then IPQI ~e IPal +
(l-e)IPbl. Here, IPbl~c and IPal~c if lal~~ (see (2.5) and the dis
cussion in the end of Remark 2). If lal ~ ~ we get by (3.5) and (2.5) that

e IPal ~cln Ibl/ln(lbl/lal)(1 +In(lbl/lal))~c.

On the other hand, if PQ is defined by Case 2, then PQ= Pd where 1/2 ~
Idl ~k/2 so IPI ~c by (2.5), or PQ=Pd(/1) where d(Ji) has length ~k/2, so
IPQI ~ c because of (2.6). This completes the proof of Theorem 2.

Now, we also obtain Theorem 3. By Theorem 1 and the comments after
it, every f E Ak(F) has an extension Ef in Ak(Rn

) with liEf II Ak(Rnj ~

C II f II Ak(F)' The extension Ef is constructed, e.g., with aid of the
approximating polynomials {Pd in Definition 2 (see [1,2, 5]: however,
the construction given there is not explicitly in terms of {P Q }; combine, for
k = 1, e.g., the extension given on p. 168 in [1] with Remark 4.5 in that
paper). If {PQ} is associated to f and {PQ} to J, and Ef and E] are
obtained by means of these approximations, then Ef + E] is equal to
E(f + I), if E(f +]) is obtained by means of the approximation
{PQ+PQ} tof + 1 Now, if FeR andfEAk(F)=At(F), associate PQtof
as in the proof of the statement (fE At(F) ~ f E Ak(F)) above. Then, by
construction, {PQ} is associated to f in a linear way, and if Ef is construc
ted by means of this approximation, one obtains Theorem 3.
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